| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655 |
- <?xml version="1.0"?>
- <!-- Add more negative to training. -->
- <opencv_storage>
- <cars3 type_id="opencv-haar-classifier">
- <size>
- 20 20</size>
- <stages>
- <_>
- <!-- stage 0 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 12 8 8 -1.</_>
- <_>
- 6 16 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0452074706554413</threshold>
- <left_val>-0.7191650867462158</left_val>
- <right_val>0.7359663248062134</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 18 1 -1.</_>
- <_>
- 7 12 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0161712504923344</threshold>
- <left_val>0.5866637229919434</left_val>
- <right_val>-0.5909150242805481</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 18 5 2 -1.</_>
- <_>
- 7 19 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119725503027439</threshold>
- <left_val>-0.3645753860473633</left_val>
- <right_val>0.8175076246261597</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 11 4 -1.</_>
- <_>
- 5 14 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0554178208112717</threshold>
- <left_val>-0.5766019225120544</left_val>
- <right_val>0.8059020042419434</right_val></_></_></trees>
- <stage_threshold>-1.0691740512847900</stage_threshold>
- <parent>-1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 1 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 18 2 -1.</_>
- <_>
- 7 12 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0243058893829584</threshold>
- <left_val>0.5642552971839905</left_val>
- <right_val>-0.7375097870826721</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 14 6 -1.</_>
- <_>
- 3 3 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0302439108490944</threshold>
- <left_val>0.5537161827087402</left_val>
- <right_val>-0.5089462995529175</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 12 9 -1.</_>
- <_>
- 4 11 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1937028020620346</threshold>
- <left_val>0.7614368200302124</left_val>
- <right_val>-0.3485977053642273</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 18 12 2 -1.</_>
- <_>
- 14 18 6 1 2.</_>
- <_>
- 8 19 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120156398043036</threshold>
- <left_val>-0.4035871028900146</left_val>
- <right_val>0.6296288967132568</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 6 6 -1.</_>
- <_>
- 2 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9895049519836903e-03</threshold>
- <left_val>-0.4086846113204956</left_val>
- <right_val>0.4285241067409515</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 9 8 -1.</_>
- <_>
- 6 15 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1299877017736435</threshold>
- <left_val>-0.2570166885852814</left_val>
- <right_val>0.5929297208786011</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 10 2 -1.</_>
- <_>
- 1 6 5 1 2.</_>
- <_>
- 6 7 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0164160095155239e-03</threshold>
- <left_val>0.5601549744606018</left_val>
- <right_val>-0.2849527895450592</right_val></_></_></trees>
- <stage_threshold>-1.0788700580596924</stage_threshold>
- <parent>0</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 2 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 14 12 -1.</_>
- <_>
- 3 6 14 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0943963602185249</threshold>
- <left_val>-0.5406976938247681</left_val>
- <right_val>0.5407304763793945</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 18 9 -1.</_>
- <_>
- 7 11 6 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0279577299952507</threshold>
- <left_val>0.3281945884227753</left_val>
- <right_val>-0.7144141197204590</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 10 4 -1.</_>
- <_>
- 5 14 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0635356530547142</threshold>
- <left_val>-0.3744345009326935</left_val>
- <right_val>0.5956786870956421</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 18 9 2 -1.</_>
- <_>
- 6 19 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0211040005087852</threshold>
- <left_val>-0.4845815896987915</left_val>
- <right_val>0.7378302812576294</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 12 2 8 -1.</_>
- <_>
- 9 16 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6957250665873289e-03</threshold>
- <left_val>-0.8702409863471985</left_val>
- <right_val>0.2475769072771072</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 3 16 -1.</_>
- <_>
- 15 11 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0110464803874493</threshold>
- <left_val>-0.5981134176254272</left_val>
- <right_val>0.1849218010902405</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 1 6 -1.</_>
- <_>
- 7 11 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3549139839597046e-04</threshold>
- <left_val>0.3266639113426208</left_val>
- <right_val>-0.8332661986351013</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 8 6 -1.</_>
- <_>
- 6 3 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0495516993105412</threshold>
- <left_val>0.7439032196998596</left_val>
- <right_val>-0.4024896025657654</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 6 1 -1.</_>
- <_>
- 4 13 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9892829004675150e-03</threshold>
- <left_val>0.5047793984413147</left_val>
- <right_val>-0.5123764276504517</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 6 1 -1.</_>
- <_>
- 12 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7016697246581316e-04</threshold>
- <left_val>0.2391823977231979</left_val>
- <right_val>-0.2104973942041397</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 6 1 -1.</_>
- <_>
- 6 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4985969327390194e-03</threshold>
- <left_val>-0.3141318857669830</left_val>
- <right_val>0.7439212799072266</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 8 3 -1.</_>
- <_>
- 6 7 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7209789305925369e-03</threshold>
- <left_val>0.6021335721015930</left_val>
- <right_val>-0.3841854035854340</right_val></_></_></trees>
- <stage_threshold>-1.5200910568237305</stage_threshold>
- <parent>1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 3 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 14 1 -1.</_>
- <_>
- 8 12 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1992900399491191e-03</threshold>
- <left_val>0.2906270921230316</left_val>
- <right_val>-0.7548354268074036</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 15 12 -1.</_>
- <_>
- 5 6 15 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0943495184183121</threshold>
- <left_val>-0.4595882892608643</left_val>
- <right_val>0.3241611123085022</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 18 6 2 -1.</_>
- <_>
- 7 19 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0227251593023539</threshold>
- <left_val>-0.2826507091522217</left_val>
- <right_val>0.7242512702941895</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 10 4 -1.</_>
- <_>
- 5 14 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0585403405129910</threshold>
- <left_val>-0.5193219780921936</left_val>
- <right_val>0.6013407111167908</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 19 4 1 -1.</_>
- <_>
- 4 19 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8358890631352551e-05</threshold>
- <left_val>-0.6561384201049805</left_val>
- <right_val>0.3897354006767273</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 12 10 8 -1.</_>
- <_>
- 10 16 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9341559750027955e-04</threshold>
- <left_val>-0.8008638024330139</left_val>
- <right_val>0.2018187046051025</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 6 6 -1.</_>
- <_>
- 4 13 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8259762590751052e-04</threshold>
- <left_val>0.2970958054065704</left_val>
- <right_val>-0.8628513216972351</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 18 6 2 -1.</_>
- <_>
- 12 18 3 1 2.</_>
- <_>
- 9 19 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7955149562330917e-05</threshold>
- <left_val>-0.4508801102638245</left_val>
- <right_val>0.1758446991443634</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 9 10 -1.</_>
- <_>
- 1 15 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2162160128355026e-03</threshold>
- <left_val>-0.8695623278617859</left_val>
- <right_val>0.2619656026363373</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 18 5 -1.</_>
- <_>
- 7 2 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0133769698441029</threshold>
- <left_val>-0.6464508175849915</left_val>
- <right_val>0.3887208998203278</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 18 4 -1.</_>
- <_>
- 7 12 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0113867800682783</threshold>
- <left_val>0.2826564013957977</left_val>
- <right_val>-0.8351002931594849</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 11 6 3 -1.</_>
- <_>
- 9 11 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6949660386890173e-03</threshold>
- <left_val>-0.5282859802246094</left_val>
- <right_val>0.6657627820968628</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 3 2 -1.</_>
- <_>
- 6 10 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8329479391686618e-05</threshold>
- <left_val>-0.6864507794380188</left_val>
- <right_val>0.5240061283111572</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 12 9 8 -1.</_>
- <_>
- 8 16 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4069270109757781e-03</threshold>
- <left_val>-0.8969905972480774</left_val>
- <right_val>0.2389785945415497</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 3 2 -1.</_>
- <_>
- 6 2 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9115570214344189e-05</threshold>
- <left_val>0.4608972072601318</left_val>
- <right_val>-0.8574141860008240</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 18 6 -1.</_>
- <_>
- 2 14 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5082978904247284e-03</threshold>
- <left_val>-0.7511271238327026</left_val>
- <right_val>0.4849173128604889</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 18 1 -1.</_>
- <_>
- 6 11 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0198406204581261</threshold>
- <left_val>0.6246759295463562</left_val>
- <right_val>-0.7629678845405579</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 6 3 -1.</_>
- <_>
- 9 6 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8021910004317760e-03</threshold>
- <left_val>-0.4809493124485016</left_val>
- <right_val>0.6243296861648560</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 11 4 6 -1.</_>
- <_>
- 3 14 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1158349661855027e-04</threshold>
- <left_val>-0.8559886217117310</left_val>
- <right_val>0.3861764967441559</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 18 2 2 -1.</_>
- <_>
- 13 18 1 1 2.</_>
- <_>
- 12 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7662550564855337e-05</threshold>
- <left_val>-0.7629433274269104</left_val>
- <right_val>0.3604950010776520</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 12 9 8 -1.</_>
- <_>
- 3 16 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7047859039157629e-03</threshold>
- <left_val>-0.9496951103210449</left_val>
- <right_val>0.3921845853328705</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 12 9 2 -1.</_>
- <_>
- 9 12 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1935878582298756e-04</threshold>
- <left_val>-0.8682754039764404</left_val>
- <right_val>0.4790566861629486</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 12 8 -1.</_>
- <_>
- 2 12 6 4 2.</_>
- <_>
- 8 16 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0928940173471346e-04</threshold>
- <left_val>-0.9670708775520325</left_val>
- <right_val>0.6848754286766052</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 19 3 -1.</_>
- <_>
- 1 7 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7576759718358517e-03</threshold>
- <left_val>-0.9778658747673035</left_val>
- <right_val>0.8792119026184082</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 8 2 -1.</_>
- <_>
- 0 0 4 1 2.</_>
- <_>
- 4 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2572239181026816e-05</threshold>
- <left_val>1.</left_val>
- <right_val>-1.</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 8 2 -1.</_>
- <_>
- 16 0 4 1 2.</_>
- <_>
- 12 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4698568924795836e-05</threshold>
- <left_val>-0.8942371010780334</left_val>
- <right_val>0.6385173201560974</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 13 15 -1.</_>
- <_>
- 1 5 13 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0833231545984745e-03</threshold>
- <left_val>-0.9911761283874512</left_val>
- <right_val>0.8617964982986450</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 18 1 2 -1.</_>
- <_>
- 17 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5569420065730810e-04</threshold>
- <left_val>-1.</left_val>
- <right_val>0.9989972114562988</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 4 3 -1.</_>
- <_>
- 2 0 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.</threshold>
- <left_val>0.</left_val>
- <right_val>-1.</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 19 4 1 -1.</_>
- <_>
- 9 19 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8437039115233347e-05</threshold>
- <left_val>-0.9401987791061401</left_val>
- <right_val>0.9499294161796570</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 13 14 4 -1.</_>
- <_>
- 3 15 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5243082139641047e-04</threshold>
- <left_val>-1.</left_val>
- <right_val>1.0000870227813721</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 3 4 -1.</_>
- <_>
- 17 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.</threshold>
- <left_val>0.</left_val>
- <right_val>-1.</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 2 3 -1.</_>
- <_>
- 7 2 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8114888058044016e-05</threshold>
- <left_val>-1.</left_val>
- <right_val>1.0001029968261719</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 3 4 -1.</_>
- <_>
- 17 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.</threshold>
- <left_val>0.</left_val>
- <right_val>-1.</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 18 2 -1.</_>
- <_>
- 7 12 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6535379691049457e-03</threshold>
- <left_val>0.9649471044540405</left_val>
- <right_val>-0.9946994185447693</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 4 -1.</_>
- <_>
- 17 3 1 2 2.</_>
- <_>
- 16 5 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2355250257533044e-04</threshold>
- <left_val>-0.8841317892074585</left_val>
- <right_val>0.5885220170021057</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 13 10 2 -1.</_>
- <_>
- 3 13 5 1 2.</_>
- <_>
- 8 14 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0420220680534840e-03</threshold>
- <left_val>0.8850557208061218</left_val>
- <right_val>-0.9887136220932007</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 6 2 -1.</_>
- <_>
- 11 13 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7822980191558599e-03</threshold>
- <left_val>0.8021606206893921</left_val>
- <right_val>-0.8011325001716614</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 6 12 -1.</_>
- <_>
- 9 4 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6262819301337004e-03</threshold>
- <left_val>-0.8629643917083740</left_val>
- <right_val>0.9028394818305969</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 2 14 -1.</_>
- <_>
- 15 5 1 7 2.</_>
- <_>
- 14 12 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8437039115233347e-05</threshold>
- <left_val>0.5506380796432495</left_val>
- <right_val>-0.8834760189056396</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 12 10 -1.</_>
- <_>
- 9 2 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1351429857313633e-03</threshold>
- <left_val>0.9118285179138184</left_val>
- <right_val>-0.8601468205451965</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 4 4 -1.</_>
- <_>
- 16 13 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5544509561732411e-04</threshold>
- <left_val>-0.5529929995536804</left_val>
- <right_val>0.6181765794754028</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 19 10 1 -1.</_>
- <_>
- 10 19 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8200760172912851e-05</threshold>
- <left_val>-0.8676869273185730</left_val>
- <right_val>0.7274010777473450</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 1 18 -1.</_>
- <_>
- 15 11 1 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2933329900261015e-05</threshold>
- <left_val>0.3377492129802704</left_val>
- <right_val>-0.8335667848587036</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 5 16 -1.</_>
- <_>
- 1 12 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8638119692914188e-04</threshold>
- <left_val>-0.8729416131973267</left_val>
- <right_val>0.7917960286140442</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 12 6 -1.</_>
- <_>
- 7 8 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6316178739070892e-04</threshold>
- <left_val>-0.9013931751251221</left_val>
- <right_val>0.7772005200386047</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 11 12 6 -1.</_>
- <_>
- 2 11 6 3 2.</_>
- <_>
- 8 14 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2007999466732144e-03</threshold>
- <left_val>-0.9860498905181885</left_val>
- <right_val>0.8049355149269104</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 14 18 -1.</_>
- <_>
- 6 6 14 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3152970243245363e-03</threshold>
- <left_val>1.</left_val>
- <right_val>-1.</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 19 18 -1.</_>
- <_>
- 0 6 19 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0144739197567105</threshold>
- <left_val>-0.9682086706161499</left_val>
- <right_val>0.9563586115837097</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 17 1 3 -1.</_>
- <_>
- 10 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2585670705884695e-03</threshold>
- <left_val>1.</left_val>
- <right_val>-0.9941142201423645</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 5 10 -1.</_>
- <_>
- 2 15 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0134088601917028</threshold>
- <left_val>-0.9944000840187073</left_val>
- <right_val>0.8795533776283264</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 3 1 -1.</_>
- <_>
- 18 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0174949390348047e-05</threshold>
- <left_val>-0.9955059885978699</left_val>
- <right_val>0.4559975862503052</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 16 5 3 -1.</_>
- <_>
- 0 17 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8752219330053777e-04</threshold>
- <left_val>-1.</left_val>
- <right_val>1.0003039836883545</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 0 1 2 -1.</_>
- <_>
- 19 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.</threshold>
- <left_val>0.</left_val>
- <right_val>-1.</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 14 1 -1.</_>
- <_>
- 7 12 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7442798279225826e-03</threshold>
- <left_val>1.</left_val>
- <right_val>-1.</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 12 6 6 -1.</_>
- <_>
- 13 14 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8128331177867949e-04</threshold>
- <left_val>-0.9679043292999268</left_val>
- <right_val>0.5377150774002075</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 4 4 -1.</_>
- <_>
- 0 13 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9258249560371041e-04</threshold>
- <left_val>-0.9925985932350159</left_val>
- <right_val>0.7377948760986328</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 17 3 3 -1.</_>
- <_>
- 10 18 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6873782090842724e-03</threshold>
- <left_val>0.4390138089656830</left_val>
- <right_val>-0.9956768155097961</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 15 5 -1.</_>
- <_>
- 7 10 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6997690545395017e-04</threshold>
- <left_val>0.8890876173973083</left_val>
- <right_val>-0.9900755286216736</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 9 1 4 -1.</_>
- <_>
- 14 11 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8665470381383784e-05</threshold>
- <left_val>0.4759410917758942</left_val>
- <right_val>-0.9352231025695801</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 6 4 -1.</_>
- <_>
- 5 9 3 2 2.</_>
- <_>
- 8 11 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4182338751852512e-04</threshold>
- <left_val>-0.7511792182922363</left_val>
- <right_val>0.8805574178695679</right_val></_></_></trees>
- <stage_threshold>-4.9593520164489746</stage_threshold>
- <parent>2</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 4 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 14 14 -1.</_>
- <_>
- 0 3 7 7 2.</_>
- <_>
- 7 10 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127300098538399</threshold>
- <left_val>0.4832380115985870</left_val>
- <right_val>-0.7198603749275208</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 20 8 -1.</_>
- <_>
- 0 6 20 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0589522011578083</threshold>
- <left_val>-0.4658026993274689</left_val>
- <right_val>0.4875808060169220</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 8 8 -1.</_>
- <_>
- 0 16 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8740529716014862e-04</threshold>
- <left_val>-0.7789018750190735</left_val>
- <right_val>0.2557401061058044</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 12 6 6 -1.</_>
- <_>
- 7 14 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105524603277445</threshold>
- <left_val>-0.6375812888145447</left_val>
- <right_val>0.3461680114269257</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 18 8 2 -1.</_>
- <_>
- 1 18 4 1 2.</_>
- <_>
- 5 19 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0834580585360527e-03</threshold>
- <left_val>-0.6557192206382751</left_val>
- <right_val>0.6636518239974976</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 10 4 8 -1.</_>
- <_>
- 8 14 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0235214307904243</threshold>
- <left_val>-0.9006652832031250</left_val>
- <right_val>0.4957715868949890</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 6 5 -1.</_>
- <_>
- 2 12 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1901269792579114e-04</threshold>
- <left_val>-0.9414082765579224</left_val>
- <right_val>0.4645870029926300</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 9 12 -1.</_>
- <_>
- 10 12 9 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5295119374059141e-04</threshold>
- <left_val>0.1733245998620987</left_val>
- <right_val>-0.9518421888351440</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 10 15 -1.</_>
- <_>
- 5 10 10 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9944370985031128e-03</threshold>
- <left_val>0.2332555055618286</left_val>
- <right_val>-0.9303036928176880</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 18 14 -1.</_>
- <_>
- 10 2 9 7 2.</_>
- <_>
- 1 9 9 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8488549869507551e-03</threshold>
- <left_val>0.5224574208259583</left_val>
- <right_val>-0.6394140124320984</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 3 16 -1.</_>
- <_>
- 2 11 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3920639008283615e-03</threshold>
- <left_val>-0.6068183183670044</left_val>
- <right_val>0.4723689854145050</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 17 13 3 -1.</_>
- <_>
- 6 18 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5511489841155708e-05</threshold>
- <left_val>0.2968985140323639</left_val>
- <right_val>-0.6452224850654602</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 9 3 -1.</_>
- <_>
- 8 11 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1621841005980968e-03</threshold>
- <left_val>-0.4258666932582855</left_val>
- <right_val>0.5548338890075684</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 18 4 -1.</_>
- <_>
- 7 12 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1551498472690582e-03</threshold>
- <left_val>0.3051683902740479</left_val>
- <right_val>-0.8206862807273865</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 4 2 -1.</_>
- <_>
- 3 9 2 1 2.</_>
- <_>
- 5 10 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7603079322725534e-04</threshold>
- <left_val>-0.4252283871173859</left_val>
- <right_val>0.4734784960746765</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 8 3 -1.</_>
- <_>
- 7 4 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6310528889298439e-03</threshold>
- <left_val>0.4430184960365295</left_val>
- <right_val>-0.5268139839172363</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 17 2 3 -1.</_>
- <_>
- 0 18 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0609399760141969e-04</threshold>
- <left_val>-0.4128456115722656</left_val>
- <right_val>0.4862971007823944</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 10 4 -1.</_>
- <_>
- 5 10 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0146872196346521</threshold>
- <left_val>0.3483710885047913</left_val>
- <right_val>-0.6565722227096558</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 15 6 -1.</_>
- <_>
- 1 14 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0810066536068916</threshold>
- <left_val>-0.3347136080265045</left_val>
- <right_val>0.6498758792877197</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 19 14 1 -1.</_>
- <_>
- 6 19 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1147878770716488e-05</threshold>
- <left_val>-0.5422406792640686</left_val>
- <right_val>0.2807042896747589</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 19 16 1 -1.</_>
- <_>
- 8 19 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6208710551145487e-05</threshold>
- <left_val>-0.7503160834312439</left_val>
- <right_val>0.4175724089145660</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 11 1 2 -1.</_>
- <_>
- 14 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2025800717528909e-05</threshold>
- <left_val>0.3986887931823730</left_val>
- <right_val>-0.8484249711036682</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 11 3 2 -1.</_>
- <_>
- 3 12 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7908370611839928e-05</threshold>
- <left_val>0.4262354969978333</left_val>
- <right_val>-0.6090481281280518</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 12 1 -1.</_>
- <_>
- 5 12 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7988298572599888e-04</threshold>
- <left_val>0.2306731045246124</left_val>
- <right_val>-0.3030667901039124</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 12 12 1 -1.</_>
- <_>
- 9 12 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8329479391686618e-05</threshold>
- <left_val>0.4294688999652863</left_val>
- <right_val>-0.6150280237197876</right_val></_></_></trees>
- <stage_threshold>-2.0059499740600586</stage_threshold>
- <parent>3</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 5 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 18 3 2 -1.</_>
- <_>
- 8 18 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7926961714401841e-04</threshold>
- <left_val>-0.8508998155593872</left_val>
- <right_val>0.2012203931808472</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 18 3 2 -1.</_>
- <_>
- 11 18 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0719529818743467e-03</threshold>
- <left_val>-0.8750498294830322</left_val>
- <right_val>0.1188623011112213</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 18 3 2 -1.</_>
- <_>
- 8 18 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1958930408582091e-03</threshold>
- <left_val>0.1821606010198593</left_val>
- <right_val>-0.8673701882362366</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 13 6 -1.</_>
- <_>
- 4 3 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0367217697203159</threshold>
- <left_val>0.3615708947181702</left_val>
- <right_val>-0.3918508887290955</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 15 2 1 -1.</_>
- <_>
- 9 15 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8816348640248179e-04</threshold>
- <left_val>0.1872649937868118</left_val>
- <right_val>-0.7076212763786316</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 15 3 1 -1.</_>
- <_>
- 11 15 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8340590223670006e-04</threshold>
- <left_val>0.1269242018461227</left_val>
- <right_val>-0.7228708863258362</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 18 1 -1.</_>
- <_>
- 7 12 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0425732918083668</threshold>
- <left_val>0.5858349800109863</left_val>
- <right_val>-0.2147608995437622</right_val></_></_></trees>
- <stage_threshold>-0.9255558848381042</stage_threshold>
- <parent>4</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 6 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 18 7 2 -1.</_>
- <_>
- 6 19 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0233492702245712</threshold>
- <left_val>-0.2366411983966827</left_val>
- <right_val>0.5849282145500183</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 16 2 1 -1.</_>
- <_>
- 12 16 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9444608157500625e-04</threshold>
- <left_val>0.1428918987512589</left_val>
- <right_val>-0.6820772290229797</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 8 4 6 -1.</_>
- <_>
- 3 8 2 3 2.</_>
- <_>
- 5 11 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0177930891513824</threshold>
- <left_val>0.5955523848533630</left_val>
- <right_val>-0.2330096960067749</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 18 4 -1.</_>
- <_>
- 2 5 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0353034809231758</threshold>
- <left_val>-0.3556973040103912</left_val>
- <right_val>0.3598164916038513</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 16 2 2 -1.</_>
- <_>
- 7 16 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1409897645935416e-04</threshold>
- <left_val>0.1659422963857651</left_val>
- <right_val>-0.7856965065002441</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 19 2 1 -1.</_>
- <_>
- 9 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5466518602333963e-04</threshold>
- <left_val>-0.7188175916671753</left_val>
- <right_val>0.1491793990135193</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 19 2 1 -1.</_>
- <_>
- 10 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2956211362034082e-04</threshold>
- <left_val>-0.7239602804183960</left_val>
- <right_val>0.1283237040042877</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 18 3 -1.</_>
- <_>
- 7 12 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0558854192495346</threshold>
- <left_val>0.2699365019798279</left_val>
- <right_val>-0.3814569115638733</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 10 9 -1.</_>
- <_>
- 5 11 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2315281033515930</threshold>
- <left_val>0.5102406740188599</left_val>
- <right_val>-0.2150623947381973</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 6 18 -1.</_>
- <_>
- 9 0 2 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8320471066981554e-03</threshold>
- <left_val>-0.3187570869922638</left_val>
- <right_val>0.3741405010223389</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 8 4 -1.</_>
- <_>
- 2 5 4 2 2.</_>
- <_>
- 6 7 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1148001588881016e-03</threshold>
- <left_val>0.3868972063064575</left_val>
- <right_val>-0.3064059019088745</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 11 2 3 -1.</_>
- <_>
- 13 11 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0463730432093143e-03</threshold>
- <left_val>-0.0578359216451645</left_val>
- <right_val>0.2854403853416443</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 2 3 -1.</_>
- <_>
- 6 11 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2736029748339206e-04</threshold>
- <left_val>-0.3159281015396118</left_val>
- <right_val>0.4068993926048279</right_val></_></_></trees>
- <stage_threshold>-1.1411540508270264</stage_threshold>
- <parent>5</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 7 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 19 18 1 -1.</_>
- <_>
- 7 19 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0220439601689577</threshold>
- <left_val>-0.2536872923374176</left_val>
- <right_val>0.5212177038192749</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 14 3 6 -1.</_>
- <_>
- 13 14 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1312560420483351e-03</threshold>
- <left_val>0.1482914984226227</left_val>
- <right_val>-0.5914195775985718</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 12 4 -1.</_>
- <_>
- 4 11 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0413990207016468</threshold>
- <left_val>0.4204145073890686</left_val>
- <right_val>-0.2349137067794800</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 20 8 -1.</_>
- <_>
- 0 6 20 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1522327959537506</threshold>
- <left_val>-0.3104422092437744</left_val>
- <right_val>0.4176956117153168</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 14 2 4 -1.</_>
- <_>
- 8 14 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2278419975191355e-04</threshold>
- <left_val>0.2251144051551819</left_val>
- <right_val>-0.6049224138259888</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 10 8 -1.</_>
- <_>
- 10 10 5 4 2.</_>
- <_>
- 5 14 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139188598841429</threshold>
- <left_val>0.1998808979988098</left_val>
- <right_val>-0.5362910032272339</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 1 4 -1.</_>
- <_>
- 5 14 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3200067058205605e-03</threshold>
- <left_val>-0.3086053133010864</left_val>
- <right_val>0.3600850105285645</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 1 8 -1.</_>
- <_>
- 10 4 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0135594001039863</threshold>
- <left_val>0.7699136137962341</left_val>
- <right_val>-0.1129935979843140</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 18 8 -1.</_>
- <_>
- 7 8 6 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2024694979190826</threshold>
- <left_val>0.5726454854011536</left_val>
- <right_val>-0.1685701012611389</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 10 4 -1.</_>
- <_>
- 9 8 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0256939493119717</threshold>
- <left_val>-0.0890305936336517</left_val>
- <right_val>0.4055748879909515</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 8 3 -1.</_>
- <_>
- 6 7 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0135868499055505</threshold>
- <left_val>0.4805161952972412</left_val>
- <right_val>-0.1680151969194412</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 9 3 3 -1.</_>
- <_>
- 11 9 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3351547578349710e-04</threshold>
- <left_val>0.2068227976560593</left_val>
- <right_val>-0.2571463882923126</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 14 2 4 -1.</_>
- <_>
- 5 14 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3086969556752592e-04</threshold>
- <left_val>0.2003916949033737</left_val>
- <right_val>-0.4468185007572174</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 17 10 2 -1.</_>
- <_>
- 15 17 5 1 2.</_>
- <_>
- 10 18 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4451867043972015e-03</threshold>
- <left_val>0.0453975386917591</left_val>
- <right_val>-0.6604390144348145</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 18 3 2 -1.</_>
- <_>
- 4 18 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1732289567589760e-03</threshold>
- <left_val>-0.7233589887619019</left_val>
- <right_val>0.1189457029104233</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 4 9 -1.</_>
- <_>
- 13 2 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0270948894321918</threshold>
- <left_val>0.4183718860149384</left_val>
- <right_val>-0.0622722618281841</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 4 9 -1.</_>
- <_>
- 5 2 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0128746498376131</threshold>
- <left_val>-0.2036883980035782</left_val>
- <right_val>0.4376415908336639</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 2 8 -1.</_>
- <_>
- 10 8 1 4 2.</_>
- <_>
- 9 12 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8124409727752209e-03</threshold>
- <left_val>-0.6812670230865479</left_val>
- <right_val>0.1294167041778564</right_val></_></_></trees>
- <stage_threshold>-1.2025229930877686</stage_threshold>
- <parent>6</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 8 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 18 14 2 -1.</_>
- <_>
- 0 18 7 1 2.</_>
- <_>
- 7 19 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0179104395210743</threshold>
- <left_val>-0.2364671975374222</left_val>
- <right_val>0.5514438152313232</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 13 9 1 -1.</_>
- <_>
- 13 13 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0143511034548283e-03</threshold>
- <left_val>0.4693753123283386</left_val>
- <right_val>-0.3883568942546844</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 15 3 1 -1.</_>
- <_>
- 7 15 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2181540629826486e-04</threshold>
- <left_val>0.1153784990310669</left_val>
- <right_val>-0.7132592797279358</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 16 20 4 -1.</_>
- <_>
- 10 16 10 2 2.</_>
- <_>
- 0 18 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0263313204050064</threshold>
- <left_val>-0.6675789952278137</left_val>
- <right_val>0.1828629970550537</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 18 4 -1.</_>
- <_>
- 1 13 9 2 2.</_>
- <_>
- 10 15 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0270899794995785</threshold>
- <left_val>0.0714882835745811</left_val>
- <right_val>-0.7389600276947021</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 6 1 -1.</_>
- <_>
- 12 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9808810688555241e-03</threshold>
- <left_val>-0.0624900311231613</left_val>
- <right_val>0.2579961121082306</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 12 6 -1.</_>
- <_>
- 4 10 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0938581079244614</threshold>
- <left_val>-0.1166857033967972</left_val>
- <right_val>0.8323975801467896</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 11 9 4 -1.</_>
- <_>
- 13 11 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0170704908668995</threshold>
- <left_val>0.2551425099372864</left_val>
- <right_val>-0.1464619040489197</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 9 1 -1.</_>
- <_>
- 4 13 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6102341040968895e-03</threshold>
- <left_val>0.3810698091983795</left_val>
- <right_val>-0.2898282110691071</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 17 1 3 -1.</_>
- <_>
- 12 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6884109936654568e-03</threshold>
- <left_val>0.3976930975914001</left_val>
- <right_val>-0.1791553944349289</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 17 3 3 -1.</_>
- <_>
- 6 17 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1422219686210155e-03</threshold>
- <left_val>0.1220583021640778</left_val>
- <right_val>-0.7954893708229065</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 20 8 -1.</_>
- <_>
- 0 6 20 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0854484736919403</threshold>
- <left_val>-0.3227156102657318</left_val>
- <right_val>0.2583124935626984</right_val></_></_></trees>
- <stage_threshold>-0.8488889932632446</stage_threshold>
- <parent>7</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 9 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 1 6 -1.</_>
- <_>
- 5 15 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2407209724187851e-03</threshold>
- <left_val>0.7162470817565918</left_val>
- <right_val>-0.2007752954959869</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 14 10 -1.</_>
- <_>
- 13 5 7 5 2.</_>
- <_>
- 6 10 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0822703167796135</threshold>
- <left_val>0.3968873023986816</left_val>
- <right_val>-0.2290832996368408</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 9 1 -1.</_>
- <_>
- 5 9 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2309550121426582e-03</threshold>
- <left_val>-0.2406931966543198</left_val>
- <right_val>0.3659430146217346</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 11 9 3 -1.</_>
- <_>
- 13 11 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0140555696561933</threshold>
- <left_val>0.2607584893703461</left_val>
- <right_val>-0.2829737067222595</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 14 6 1 -1.</_>
- <_>
- 9 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5327459014952183e-04</threshold>
- <left_val>0.1528156995773315</left_val>
- <right_val>-0.5593969821929932</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 0 1 16 -1.</_>
- <_>
- 19 8 1 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125494198873639</threshold>
- <left_val>-0.2089716047048569</left_val>
- <right_val>0.2781802117824554</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 6 10 -1.</_>
- <_>
- 7 4 3 5 2.</_>
- <_>
- 10 9 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0156330708414316</threshold>
- <left_val>0.1483357995748520</left_val>
- <right_val>-0.6003684997558594</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 9 2 3 -1.</_>
- <_>
- 10 9 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4582709930837154e-04</threshold>
- <left_val>-0.2270790934562683</left_val>
- <right_val>0.1987556070089340</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 12 2 -1.</_>
- <_>
- 4 12 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0158222708851099</threshold>
- <left_val>0.2820397913455963</left_val>
- <right_val>-0.2920896112918854</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 18 3 2 -1.</_>
- <_>
- 12 19 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7247788906097412e-03</threshold>
- <left_val>-0.1720713973045349</left_val>
- <right_val>0.4697273969650269</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 17 1 2 -1.</_>
- <_>
- 5 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8489677505567670e-04</threshold>
- <left_val>0.1544692963361740</left_val>
- <right_val>-0.6636797189712524</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 11 2 1 -1.</_>
- <_>
- 9 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5823758915066719e-04</threshold>
- <left_val>0.1690579950809479</left_val>
- <right_val>-0.4210532009601593</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 9 4 -1.</_>
- <_>
- 8 0 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0420489497482777</threshold>
- <left_val>-0.1286004930734634</left_val>
- <right_val>0.6025344729423523</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 7 3 -1.</_>
- <_>
- 7 12 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0152104198932648</threshold>
- <left_val>0.3247380852699280</left_val>
- <right_val>-0.2400044947862625</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 14 3 1 -1.</_>
- <_>
- 9 14 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4586068512871861e-04</threshold>
- <left_val>-0.7052754759788513</left_val>
- <right_val>0.1198176965117455</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 6 4 -1.</_>
- <_>
- 10 9 3 2 2.</_>
- <_>
- 7 11 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6090662255883217e-03</threshold>
- <left_val>-0.5189142227172852</left_val>
- <right_val>0.1511954963207245</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 3 3 -1.</_>
- <_>
- 8 9 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9692882243543863e-04</threshold>
- <left_val>0.2492880970239639</left_val>
- <right_val>-0.2738071978092194</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 2 1 -1.</_>
- <_>
- 9 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3032859424129128e-03</threshold>
- <left_val>-0.7021797895431519</left_val>
- <right_val>0.1096538975834846</right_val></_></_></trees>
- <stage_threshold>-1.0809509754180908</stage_threshold>
- <parent>8</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 10 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 19 15 1 -1.</_>
- <_>
- 6 19 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0127973603084683</threshold>
- <left_val>-0.2490361928939819</left_val>
- <right_val>0.4674673080444336</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 3 3 -1.</_>
- <_>
- 9 4 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1834129951894283e-03</threshold>
- <left_val>0.3007251024246216</left_val>
- <right_val>-0.2219883054494858</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 18 1 -1.</_>
- <_>
- 7 12 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0236128699034452</threshold>
- <left_val>0.2414264976978302</left_val>
- <right_val>-0.3374670147895813</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 8 1 9 -1.</_>
- <_>
- 14 11 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0251536108553410</threshold>
- <left_val>0.4372070133686066</left_val>
- <right_val>-0.3275614082813263</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 2 18 -1.</_>
- <_>
- 2 11 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0211393106728792</threshold>
- <left_val>-0.2863174080848694</left_val>
- <right_val>0.3124063909053802</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 11 6 6 -1.</_>
- <_>
- 16 11 3 3 2.</_>
- <_>
- 13 14 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217125993221998</threshold>
- <left_val>0.6942697763442993</left_val>
- <right_val>-0.1012582033872604</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 18 6 -1.</_>
- <_>
- 1 9 9 3 2.</_>
- <_>
- 10 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0430783592164516</threshold>
- <left_val>-0.5607234239578247</left_val>
- <right_val>0.1663125008344650</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 6 1 -1.</_>
- <_>
- 12 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4987450558692217e-03</threshold>
- <left_val>0.1272646039724350</left_val>
- <right_val>-0.1166080012917519</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 6 1 -1.</_>
- <_>
- 6 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1716569103300571e-03</threshold>
- <left_val>-0.2401334047317505</left_val>
- <right_val>0.4614624083042145</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 13 3 7 -1.</_>
- <_>
- 18 13 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8898528330028057e-03</threshold>
- <left_val>0.0905465632677078</left_val>
- <right_val>-0.4839006960391998</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 3 7 -1.</_>
- <_>
- 1 13 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1625960469245911e-03</threshold>
- <left_val>-0.5429257154464722</left_val>
- <right_val>0.1364106982946396</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 14 6 -1.</_>
- <_>
- 10 10 7 3 2.</_>
- <_>
- 3 13 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0367816612124443</threshold>
- <left_val>-0.7064548730850220</left_val>
- <right_val>0.1088668033480644</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 6 5 -1.</_>
- <_>
- 3 10 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0246897693723440</threshold>
- <left_val>-0.1673354059457779</left_val>
- <right_val>0.5149983167648315</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 2 3 -1.</_>
- <_>
- 9 8 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8654521815478802e-03</threshold>
- <left_val>0.5060626268386841</left_val>
- <right_val>-0.1594700068235397</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 10 3 -1.</_>
- <_>
- 5 9 10 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117849996313453</threshold>
- <left_val>0.4351908862590790</left_val>
- <right_val>-0.1512733995914459</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 13 2 1 -1.</_>
- <_>
- 10 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4989547505974770e-04</threshold>
- <left_val>0.0692935213446617</left_val>
- <right_val>-0.4393649101257324</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 2 1 -1.</_>
- <_>
- 9 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9616740327328444e-04</threshold>
- <left_val>0.0982565581798553</left_val>
- <right_val>-0.6629868745803833</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 2 3 -1.</_>
- <_>
- 9 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2817288562655449e-03</threshold>
- <left_val>0.4888150990009308</left_val>
- <right_val>-0.1557238996028900</right_val></_></_></trees>
- <stage_threshold>-1.1087180376052856</stage_threshold>
- <parent>9</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 11 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 8 -1.</_>
- <_>
- 9 4 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.9095050245523453e-03</threshold>
- <left_val>0.5630884766578674</left_val>
- <right_val>-0.2063539028167725</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 0 1 14 -1.</_>
- <_>
- 19 7 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5435219071805477e-03</threshold>
- <left_val>-0.2470169961452484</left_val>
- <right_val>0.1799020022153854</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 6 2 -1.</_>
- <_>
- 7 7 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7091082241386175e-04</threshold>
- <left_val>0.2453050017356873</left_val>
- <right_val>-0.2765454053878784</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 8 1 9 -1.</_>
- <_>
- 14 11 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216368697583675</threshold>
- <left_val>0.2515161931514740</left_val>
- <right_val>-0.3227509856224060</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 18 4 2 -1.</_>
- <_>
- 2 18 2 1 2.</_>
- <_>
- 4 19 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5493409484624863e-03</threshold>
- <left_val>-0.1476895958185196</left_val>
- <right_val>0.5545899271965027</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 11 6 3 -1.</_>
- <_>
- 9 11 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6613079933449626e-03</threshold>
- <left_val>-0.2122790962457657</left_val>
- <right_val>0.1571837961673737</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 14 -1.</_>
- <_>
- 0 7 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4684818759560585e-03</threshold>
- <left_val>-0.2621173858642578</left_val>
- <right_val>0.2920702099800110</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 2 15 -1.</_>
- <_>
- 10 10 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0522385612130165</threshold>
- <left_val>0.1780423969030380</left_val>
- <right_val>-0.3343229889869690</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 6 3 -1.</_>
- <_>
- 8 11 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5752868968993425e-03</threshold>
- <left_val>-0.2065097987651825</left_val>
- <right_val>0.4189889132976532</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 6 7 -1.</_>
- <_>
- 13 6 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0160471405833960</threshold>
- <left_val>0.2585200071334839</left_val>
- <right_val>-0.1094772964715958</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 12 9 -1.</_>
- <_>
- 8 10 4 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1159958988428116</threshold>
- <left_val>0.6298483014106750</left_val>
- <right_val>-0.1196947023272514</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 14 3 1 -1.</_>
- <_>
- 11 14 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7595580155029893e-04</threshold>
- <left_val>-0.6507467031478882</left_val>
- <right_val>0.0756275802850723</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 14 3 1 -1.</_>
- <_>
- 8 14 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2097578989341855e-04</threshold>
- <left_val>-0.5833796858787537</left_val>
- <right_val>0.1222841963171959</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 14 3 2 -1.</_>
- <_>
- 11 14 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9017631206661463e-04</threshold>
- <left_val>0.0758925378322601</left_val>
- <right_val>-0.2629995942115784</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 2 6 -1.</_>
- <_>
- 5 8 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1535029411315918e-03</threshold>
- <left_val>-0.1664831042289734</left_val>
- <right_val>0.4664255082607269</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 14 3 2 -1.</_>
- <_>
- 11 14 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4046890428289771e-03</threshold>
- <left_val>-0.3981274962425232</left_val>
- <right_val>0.0561619699001312</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 12 3 4 -1.</_>
- <_>
- 4 12 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1666089780628681e-03</threshold>
- <left_val>-0.1787768006324768</left_val>
- <right_val>0.4090973138809204</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 14 6 -1.</_>
- <_>
- 3 3 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0164993591606617</threshold>
- <left_val>0.2048030048608780</left_val>
- <right_val>-0.3630825877189636</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 14 3 2 -1.</_>
- <_>
- 8 14 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1761019383557141e-04</threshold>
- <left_val>0.1311777979135513</left_val>
- <right_val>-0.4833852946758270</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 11 3 3 -1.</_>
- <_>
- 13 11 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0707670897245407e-03</threshold>
- <left_val>9.2487707734107971e-03</left_val>
- <right_val>-0.6447566151618958</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 3 3 -1.</_>
- <_>
- 6 11 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3107338822446764e-04</threshold>
- <left_val>-0.2549797892570496</left_val>
- <right_val>0.2758406996726990</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 3 -1.</_>
- <_>
- 4 1 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139847695827484</threshold>
- <left_val>0.1226134970784187</left_val>
- <right_val>-0.5258917808532715</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 19 18 1 -1.</_>
- <_>
- 7 19 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0238846298307180</threshold>
- <left_val>-0.1637594997882843</left_val>
- <right_val>0.3971964120864868</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 11 6 -1.</_>
- <_>
- 5 12 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0941136777400970</threshold>
- <left_val>0.2231238931417465</left_val>
- <right_val>-0.2817093133926392</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 12 1 -1.</_>
- <_>
- 6 9 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0163963604718447</threshold>
- <left_val>0.5174812078475952</left_val>
- <right_val>-0.1398597955703735</right_val></_></_></trees>
- <stage_threshold>-1.1378910541534424</stage_threshold>
- <parent>10</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 12 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 1 6 -1.</_>
- <_>
- 5 15 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8984159396495670e-04</threshold>
- <left_val>0.4796459972858429</left_val>
- <right_val>-0.1926054060459137</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 12 6 6 -1.</_>
- <_>
- 16 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7213290818035603e-03</threshold>
- <left_val>-0.3855938911437988</left_val>
- <right_val>0.2359178066253662</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 17 3 2 -1.</_>
- <_>
- 5 18 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7611780203878880e-03</threshold>
- <left_val>0.1145095974206924</left_val>
- <right_val>-0.5536686778068542</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 12 6 6 -1.</_>
- <_>
- 16 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0619058012962341</threshold>
- <left_val>0.0361764803528786</left_val>
- <right_val>-0.7537580132484436</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 6 6 -1.</_>
- <_>
- 2 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8295709788799286e-03</threshold>
- <left_val>-0.2995564043521881</left_val>
- <right_val>0.2059424966573715</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 8 1 9 -1.</_>
- <_>
- 14 11 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0229486804455519</threshold>
- <left_val>0.1910860985517502</left_val>
- <right_val>-0.2746480107307434</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 16 11 4 -1.</_>
- <_>
- 0 18 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0131213096901774</threshold>
- <left_val>-0.1467829048633575</left_val>
- <right_val>0.4494847953319550</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 8 1 9 -1.</_>
- <_>
- 14 11 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0331512987613678</threshold>
- <left_val>0.2912957966327667</left_val>
- <right_val>-0.1595291942358017</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 4 6 -1.</_>
- <_>
- 5 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0224155597388744</threshold>
- <left_val>-0.1776317954063416</left_val>
- <right_val>0.3403505980968475</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 8 -1.</_>
- <_>
- 9 4 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0255698896944523</threshold>
- <left_val>0.5480523109436035</left_val>
- <right_val>-0.1752621978521347</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 10 2 8 -1.</_>
- <_>
- 8 14 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174023006111383</threshold>
- <left_val>-0.3940981030464172</left_val>
- <right_val>0.1953804939985275</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 12 8 3 -1.</_>
- <_>
- 12 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6808518022298813e-03</threshold>
- <left_val>0.1267247051000595</left_val>
- <right_val>-0.3698250055313110</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 18 3 -1.</_>
- <_>
- 7 3 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0474075004458427</threshold>
- <left_val>-0.6734154224395752</left_val>
- <right_val>0.0941268503665924</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 13 4 4 -1.</_>
- <_>
- 12 13 2 2 2.</_>
- <_>
- 10 15 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0174131542444229e-03</threshold>
- <left_val>-0.4878580868244171</left_val>
- <right_val>-4.7722761519253254e-03</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 17 1 3 -1.</_>
- <_>
- 4 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6818639859557152e-04</threshold>
- <left_val>0.3031811118125916</left_val>
- <right_val>-0.1906266957521439</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 12 8 3 -1.</_>
- <_>
- 12 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0346436500549316</threshold>
- <left_val>0.1061747968196869</left_val>
- <right_val>-0.1113270968198776</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 13 8 4 -1.</_>
- <_>
- 5 13 4 2 2.</_>
- <_>
- 9 15 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0128513900563121</threshold>
- <left_val>0.1139544025063515</left_val>
- <right_val>-0.6669226884841919</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 20 18 -1.</_>
- <_>
- 0 9 20 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2961465120315552</threshold>
- <left_val>-0.1820058971643448</left_val>
- <right_val>0.3209075033664703</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 17 1 2 -1.</_>
- <_>
- 5 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3540580403059721e-03</threshold>
- <left_val>-0.7073159813880920</left_val>
- <right_val>0.0918638333678246</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 18 3 2 -1.</_>
- <_>
- 17 19 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0616841549053788e-04</threshold>
- <left_val>0.1960162967443466</left_val>
- <right_val>-0.1338178962469101</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 7 3 -1.</_>
- <_>
- 4 9 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4999729618430138e-03</threshold>
- <left_val>0.3074981868267059</left_val>
- <right_val>-0.1724286973476410</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 13 2 -1.</_>
- <_>
- 7 10 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122836297377944</threshold>
- <left_val>0.1942628026008606</left_val>
- <right_val>-0.1230755969882011</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 12 2 1 -1.</_>
- <_>
- 8 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9181630341336131e-04</threshold>
- <left_val>0.1334999054670334</left_val>
- <right_val>-0.3691028952598572</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 6 5 -1.</_>
- <_>
- 9 11 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7476788964122534e-03</threshold>
- <left_val>-0.1872316002845764</left_val>
- <right_val>0.2906386852264404</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 14 3 2 -1.</_>
- <_>
- 9 14 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3845712682232261e-04</threshold>
- <left_val>0.1176405027508736</left_val>
- <right_val>-0.5548595190048218</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 18 3 2 -1.</_>
- <_>
- 17 19 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2914132140576839e-03</threshold>
- <left_val>-0.6762797832489014</left_val>
- <right_val>0.0256425291299820</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 18 3 2 -1.</_>
- <_>
- 0 19 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0435717245563865e-04</threshold>
- <left_val>0.3097242116928101</left_val>
- <right_val>-0.2231778949499130</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 18 3 2 -1.</_>
- <_>
- 16 19 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0178245995193720</threshold>
- <left_val>0.0100319497287273</left_val>
- <right_val>-1.0000309944152832</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 18 3 2 -1.</_>
- <_>
- 1 19 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5915339142084122e-03</threshold>
- <left_val>-0.7925583124160767</left_val>
- <right_val>0.0804975628852844</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 15 2 2 -1.</_>
- <_>
- 12 15 1 1 2.</_>
- <_>
- 11 16 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2610289528965950e-04</threshold>
- <left_val>-0.4836213886737823</left_val>
- <right_val>0.0490311309695244</right_val></_></_></trees>
- <stage_threshold>-1.0918780565261841</stage_threshold>
- <parent>11</parent>
- <next>-1</next></_></stages></cars3>
- </opencv_storage>
|