tum 3 lat temu
commit
02afc78d89

+ 3 - 0
.gitignore

@@ -0,0 +1,3 @@
1
+yolov3.weights
2
+yolov3-tiny.weights
3
+yolo_object.py

BIN
cctv016.ts


+ 80 - 0
coco.names

@@ -0,0 +1,80 @@
1
+person
2
+bicycle
3
+car
4
+motorbike
5
+aeroplane
6
+bus
7
+train
8
+truck
9
+boat
10
+traffic light
11
+fire hydrant
12
+stop sign
13
+parking meter
14
+bench
15
+bird
16
+cat
17
+dog
18
+horse
19
+sheep
20
+cow
21
+elephant
22
+bear
23
+zebra
24
+giraffe
25
+backpack
26
+umbrella
27
+handbag
28
+tie
29
+suitcase
30
+frisbee
31
+skis
32
+snowboard
33
+sports ball
34
+kite
35
+baseball bat
36
+baseball glove
37
+skateboard
38
+surfboard
39
+tennis racket
40
+bottle
41
+wine glass
42
+cup
43
+fork
44
+knife
45
+spoon
46
+bowl
47
+banana
48
+apple
49
+sandwich
50
+orange
51
+broccoli
52
+carrot
53
+hot dog
54
+pizza
55
+donut
56
+cake
57
+chair
58
+sofa
59
+pottedplant
60
+bed
61
+diningtable
62
+toilet
63
+tvmonitor
64
+laptop
65
+mouse
66
+remote
67
+keyboard
68
+cell phone
69
+microwave
70
+oven
71
+toaster
72
+sink
73
+refrigerator
74
+book
75
+clock
76
+vase
77
+scissors
78
+teddy bear
79
+hair drier
80
+toothbrush

BIN
filename0.ts


BIN
images/bicycle.jpg


BIN
images/busy_street.jpg


BIN
pet.mp4


+ 18 - 0
readme.md

@@ -0,0 +1,18 @@
1
+# Object Detection using Yolo and OpenCV
2
+
3
+### <b>Commands to execute the code:</b>
4
+
5
+If you want to perform object detection in a static image file,
6
+```
7
+python yolo.py --image=True --image_path="folder/imagename.jpg"
8
+```
9
+
10
+If you want to perform object detection in a video,
11
+```
12
+python yolo.py --play_video=True --video_path='folder/video.mp4"
13
+```
14
+
15
+If you want to start the webcam and perform real-time object detection,
16
+```
17
+python yolo.py --webcam=True
18
+```

BIN
screenshots/image_output.JPG


BIN
screenshots/video_frame.JPG


BIN
screenshots/video_frame2.JPG


BIN
videos/bird.mp4


BIN
videos/birds.mp4


BIN
videos/car_on_road.mp4


BIN
videos/pedestrians.mp4


+ 150 - 0
yolo.py

@@ -0,0 +1,150 @@
1
+import cv2
2
+import numpy as np
3
+import argparse
4
+import time
5
+
6
+parser = argparse.ArgumentParser()
7
+parser.add_argument('--webcam', help="True/False", default=False)
8
+parser.add_argument('--play_video', help="Tue/False", default=False)
9
+parser.add_argument('--image', help="Tue/False", default=False)
10
+parser.add_argument('--video_path', help="Path of video file", default="videos/car_on_road.mp4")
11
+parser.add_argument('--image_path', help="Path of image to detect objects", default="Images/bicycle.jpg")
12
+parser.add_argument('--verbose', help="To print statements", default=True)
13
+args = parser.parse_args()
14
+
15
+#Load yolo
16
+def load_yolo():
17
+    #net = cv2.dnn.readNet("yolov3-tiny.weights", "yolov3-tiny.cfg")
18
+    net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
19
+    classes = []
20
+    with open("coco.names", "r") as f:
21
+        classes = [line.strip() for line in f.readlines()]
22
+
23
+    output_layers = [layer_name for layer_name in net.getUnconnectedOutLayersNames()]
24
+    colors = np.random.uniform(0, 255, size=(len(classes), 3))
25
+    return net, classes, colors, output_layers
26
+
27
+def load_image(img_path):
28
+    # image loading
29
+    img = cv2.imread(img_path)
30
+    img = cv2.resize(img, None, fx=0.4, fy=0.4)
31
+    height, width, channels = img.shape
32
+    return img, height, width, channels
33
+
34
+def start_webcam():
35
+    cap = cv2.VideoCapture(0)
36
+
37
+    return cap
38
+
39
+
40
+def display_blob(blob):
41
+    '''
42
+    Three images each for RED, GREEN, BLUE channel
43
+    '''
44
+    for b in blob:
45
+        for n, imgb in enumerate(b):
46
+            cv2.imshow(str(n), imgb)
47
+
48
+def detect_objects(img, net, outputLayers):
49
+    blob = cv2.dnn.blobFromImage(img, scalefactor=0.00392, size=(320, 320), mean=(0, 0, 0), swapRB=True, crop=False)
50
+    net.setInput(blob)
51
+    outputs = net.forward(outputLayers)
52
+    return blob, outputs
53
+
54
+def get_box_dimensions(outputs, height, width):
55
+    boxes = []
56
+    confs = []
57
+    class_ids = []
58
+    for output in outputs:
59
+        for detect in output:
60
+            scores = detect[5:]
61
+            class_id = np.argmax(scores)
62
+            conf = scores[class_id]
63
+            if conf > 0.3:
64
+                center_x = int(detect[0] * width)
65
+                center_y = int(detect[1] * height)
66
+                w = int(detect[2] * width)
67
+                h = int(detect[3] * height)
68
+                x = int(center_x - w/2)
69
+                y = int(center_y - h / 2)
70
+                boxes.append([x, y, w, h])
71
+                confs.append(float(conf))
72
+                class_ids.append(class_id)
73
+    return boxes, confs, class_ids
74
+
75
+def draw_labels(boxes, confs, colors, class_ids, classes, img):
76
+    indexes = cv2.dnn.NMSBoxes(boxes, confs, 0.5, 0.4)
77
+    font = cv2.FONT_HERSHEY_PLAIN
78
+    for i in range(len(boxes)):
79
+        if i in indexes:
80
+            x, y, w, h = boxes[i]
81
+            label = str(classes[class_ids[i]])
82
+            color = colors[i]
83
+            cv2.rectangle(img, (x,y), (x+w, y+h), color, 2)
84
+            cv2.putText(img, label, (x, y - 5), font, 3, color, 3)
85
+    cv2.imshow("Image", img)
86
+
87
+def image_detect(img_path):
88
+    model, classes, colors, output_layers = load_yolo()
89
+    image, height, width, channels = load_image(img_path)
90
+    blob, outputs = detect_objects(image, model, output_layers)
91
+    boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
92
+    draw_labels(boxes, confs, colors, class_ids, classes, image)
93
+    while True:
94
+        key = cv2.waitKey(1)
95
+        if key == 27:
96
+            break
97
+
98
+def webcam_detect():
99
+    model, classes, colors, output_layers = load_yolo()
100
+    cap = start_webcam()
101
+    while True:
102
+        _, frame = cap.read()
103
+        height, width, channels = frame.shape
104
+        blob, outputs = detect_objects(frame, model, output_layers)
105
+        boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
106
+        draw_labels(boxes, confs, colors, class_ids, classes, frame)
107
+        key = cv2.waitKey(1)
108
+        if key == 27:
109
+            break
110
+    cap.release()
111
+
112
+
113
+def start_video(video_path):
114
+    model, classes, colors, output_layers = load_yolo()
115
+    cap = cv2.VideoCapture(video_path)
116
+    while True:
117
+        _, frame = cap.read()
118
+        height, width, channels = frame.shape
119
+        blob, outputs = detect_objects(frame, model, output_layers)
120
+        boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
121
+        draw_labels(boxes, confs, colors, class_ids, classes, frame)
122
+        k = cv2.waitKey(1) & 0xFF
123
+        if k == 27:
124
+            cv2.destroyAllWindows()
125
+            break
126
+    cap.release()
127
+
128
+
129
+
130
+if __name__ == '__main__':
131
+    webcam = args.webcam
132
+    video_play = args.play_video
133
+    image = args.image
134
+    if webcam:
135
+        if args.verbose:
136
+            print('---- Starting Web Cam object detection ----')
137
+        webcam_detect()
138
+    if video_play:
139
+        video_path = args.video_path
140
+        if args.verbose:
141
+            print('Opening '+video_path+" .... ")
142
+        start_video(video_path)
143
+    if image:
144
+        image_path = args.image_path
145
+        if args.verbose:
146
+            print("Opening "+image_path+" .... ")
147
+        image_detect(image_path)
148
+
149
+
150
+    cv2.destroyAllWindows()

+ 182 - 0
yolov3-tiny.cfg

@@ -0,0 +1,182 @@
1
+[net]
2
+# Testing
3
+batch=1
4
+subdivisions=1
5
+# Training
6
+# batch=64
7
+# subdivisions=2
8
+width=416
9
+height=416
10
+channels=3
11
+momentum=0.9
12
+decay=0.0005
13
+angle=0
14
+saturation = 1.5
15
+exposure = 1.5
16
+hue=.1
17
+
18
+learning_rate=0.001
19
+burn_in=1000
20
+max_batches = 500200
21
+policy=steps
22
+steps=400000,450000
23
+scales=.1,.1
24
+
25
+[convolutional]
26
+batch_normalize=1
27
+filters=16
28
+size=3
29
+stride=1
30
+pad=1
31
+activation=leaky
32
+
33
+[maxpool]
34
+size=2
35
+stride=2
36
+
37
+[convolutional]
38
+batch_normalize=1
39
+filters=32
40
+size=3
41
+stride=1
42
+pad=1
43
+activation=leaky
44
+
45
+[maxpool]
46
+size=2
47
+stride=2
48
+
49
+[convolutional]
50
+batch_normalize=1
51
+filters=64
52
+size=3
53
+stride=1
54
+pad=1
55
+activation=leaky
56
+
57
+[maxpool]
58
+size=2
59
+stride=2
60
+
61
+[convolutional]
62
+batch_normalize=1
63
+filters=128
64
+size=3
65
+stride=1
66
+pad=1
67
+activation=leaky
68
+
69
+[maxpool]
70
+size=2
71
+stride=2
72
+
73
+[convolutional]
74
+batch_normalize=1
75
+filters=256
76
+size=3
77
+stride=1
78
+pad=1
79
+activation=leaky
80
+
81
+[maxpool]
82
+size=2
83
+stride=2
84
+
85
+[convolutional]
86
+batch_normalize=1
87
+filters=512
88
+size=3
89
+stride=1
90
+pad=1
91
+activation=leaky
92
+
93
+[maxpool]
94
+size=2
95
+stride=1
96
+
97
+[convolutional]
98
+batch_normalize=1
99
+filters=1024
100
+size=3
101
+stride=1
102
+pad=1
103
+activation=leaky
104
+
105
+###########
106
+
107
+[convolutional]
108
+batch_normalize=1
109
+filters=256
110
+size=1
111
+stride=1
112
+pad=1
113
+activation=leaky
114
+
115
+[convolutional]
116
+batch_normalize=1
117
+filters=512
118
+size=3
119
+stride=1
120
+pad=1
121
+activation=leaky
122
+
123
+[convolutional]
124
+size=1
125
+stride=1
126
+pad=1
127
+filters=255
128
+activation=linear
129
+
130
+
131
+
132
+[yolo]
133
+mask = 3,4,5
134
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
135
+classes=80
136
+num=6
137
+jitter=.3
138
+ignore_thresh = .7
139
+truth_thresh = 1
140
+random=1
141
+
142
+[route]
143
+layers = -4
144
+
145
+[convolutional]
146
+batch_normalize=1
147
+filters=128
148
+size=1
149
+stride=1
150
+pad=1
151
+activation=leaky
152
+
153
+[upsample]
154
+stride=2
155
+
156
+[route]
157
+layers = -1, 8
158
+
159
+[convolutional]
160
+batch_normalize=1
161
+filters=256
162
+size=3
163
+stride=1
164
+pad=1
165
+activation=leaky
166
+
167
+[convolutional]
168
+size=1
169
+stride=1
170
+pad=1
171
+filters=255
172
+activation=linear
173
+
174
+[yolo]
175
+mask = 0,1,2
176
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
177
+classes=80
178
+num=6
179
+jitter=.3
180
+ignore_thresh = .7
181
+truth_thresh = 1
182
+random=1

+ 788 - 0
yolov3.cfg

@@ -0,0 +1,788 @@
1
+[net]
2
+# Testing
3
+# batch=1
4
+# subdivisions=1
5
+# Training
6
+batch=64
7
+subdivisions=16
8
+width=608
9
+height=608
10
+channels=3
11
+momentum=0.9
12
+decay=0.0005
13
+angle=0
14
+saturation = 1.5
15
+exposure = 1.5
16
+hue=.1
17
+
18
+learning_rate=0.001
19
+burn_in=1000
20
+max_batches = 500200
21
+policy=steps
22
+steps=400000,450000
23
+scales=.1,.1
24
+
25
+[convolutional]
26
+batch_normalize=1
27
+filters=32
28
+size=3
29
+stride=1
30
+pad=1
31
+activation=leaky
32
+
33
+# Downsample
34
+
35
+[convolutional]
36
+batch_normalize=1
37
+filters=64
38
+size=3
39
+stride=2
40
+pad=1
41
+activation=leaky
42
+
43
+[convolutional]
44
+batch_normalize=1
45
+filters=32
46
+size=1
47
+stride=1
48
+pad=1
49
+activation=leaky
50
+
51
+[convolutional]
52
+batch_normalize=1
53
+filters=64
54
+size=3
55
+stride=1
56
+pad=1
57
+activation=leaky
58
+
59
+[shortcut]
60
+from=-3
61
+activation=linear
62
+
63
+# Downsample
64
+
65
+[convolutional]
66
+batch_normalize=1
67
+filters=128
68
+size=3
69
+stride=2
70
+pad=1
71
+activation=leaky
72
+
73
+[convolutional]
74
+batch_normalize=1
75
+filters=64
76
+size=1
77
+stride=1
78
+pad=1
79
+activation=leaky
80
+
81
+[convolutional]
82
+batch_normalize=1
83
+filters=128
84
+size=3
85
+stride=1
86
+pad=1
87
+activation=leaky
88
+
89
+[shortcut]
90
+from=-3
91
+activation=linear
92
+
93
+[convolutional]
94
+batch_normalize=1
95
+filters=64
96
+size=1
97
+stride=1
98
+pad=1
99
+activation=leaky
100
+
101
+[convolutional]
102
+batch_normalize=1
103
+filters=128
104
+size=3
105
+stride=1
106
+pad=1
107
+activation=leaky
108
+
109
+[shortcut]
110
+from=-3
111
+activation=linear
112
+
113
+# Downsample
114
+
115
+[convolutional]
116
+batch_normalize=1
117
+filters=256
118
+size=3
119
+stride=2
120
+pad=1
121
+activation=leaky
122
+
123
+[convolutional]
124
+batch_normalize=1
125
+filters=128
126
+size=1
127
+stride=1
128
+pad=1
129
+activation=leaky
130
+
131
+[convolutional]
132
+batch_normalize=1
133
+filters=256
134
+size=3
135
+stride=1
136
+pad=1
137
+activation=leaky
138
+
139
+[shortcut]
140
+from=-3
141
+activation=linear
142
+
143
+[convolutional]
144
+batch_normalize=1
145
+filters=128
146
+size=1
147
+stride=1
148
+pad=1
149
+activation=leaky
150
+
151
+[convolutional]
152
+batch_normalize=1
153
+filters=256
154
+size=3
155
+stride=1
156
+pad=1
157
+activation=leaky
158
+
159
+[shortcut]
160
+from=-3
161
+activation=linear
162
+
163
+[convolutional]
164
+batch_normalize=1
165
+filters=128
166
+size=1
167
+stride=1
168
+pad=1
169
+activation=leaky
170
+
171
+[convolutional]
172
+batch_normalize=1
173
+filters=256
174
+size=3
175
+stride=1
176
+pad=1
177
+activation=leaky
178
+
179
+[shortcut]
180
+from=-3
181
+activation=linear
182
+
183
+[convolutional]
184
+batch_normalize=1
185
+filters=128
186
+size=1
187
+stride=1
188
+pad=1
189
+activation=leaky
190
+
191
+[convolutional]
192
+batch_normalize=1
193
+filters=256
194
+size=3
195
+stride=1
196
+pad=1
197
+activation=leaky
198
+
199
+[shortcut]
200
+from=-3
201
+activation=linear
202
+
203
+
204
+[convolutional]
205
+batch_normalize=1
206
+filters=128
207
+size=1
208
+stride=1
209
+pad=1
210
+activation=leaky
211
+
212
+[convolutional]
213
+batch_normalize=1
214
+filters=256
215
+size=3
216
+stride=1
217
+pad=1
218
+activation=leaky
219
+
220
+[shortcut]
221
+from=-3
222
+activation=linear
223
+
224
+[convolutional]
225
+batch_normalize=1
226
+filters=128
227
+size=1
228
+stride=1
229
+pad=1
230
+activation=leaky
231
+
232
+[convolutional]
233
+batch_normalize=1
234
+filters=256
235
+size=3
236
+stride=1
237
+pad=1
238
+activation=leaky
239
+
240
+[shortcut]
241
+from=-3
242
+activation=linear
243
+
244
+[convolutional]
245
+batch_normalize=1
246
+filters=128
247
+size=1
248
+stride=1
249
+pad=1
250
+activation=leaky
251
+
252
+[convolutional]
253
+batch_normalize=1
254
+filters=256
255
+size=3
256
+stride=1
257
+pad=1
258
+activation=leaky
259
+
260
+[shortcut]
261
+from=-3
262
+activation=linear
263
+
264
+[convolutional]
265
+batch_normalize=1
266
+filters=128
267
+size=1
268
+stride=1
269
+pad=1
270
+activation=leaky
271
+
272
+[convolutional]
273
+batch_normalize=1
274
+filters=256
275
+size=3
276
+stride=1
277
+pad=1
278
+activation=leaky
279
+
280
+[shortcut]
281
+from=-3
282
+activation=linear
283
+
284
+# Downsample
285
+
286
+[convolutional]
287
+batch_normalize=1
288
+filters=512
289
+size=3
290
+stride=2
291
+pad=1
292
+activation=leaky
293
+
294
+[convolutional]
295
+batch_normalize=1
296
+filters=256
297
+size=1
298
+stride=1
299
+pad=1
300
+activation=leaky
301
+
302
+[convolutional]
303
+batch_normalize=1
304
+filters=512
305
+size=3
306
+stride=1
307
+pad=1
308
+activation=leaky
309
+
310
+[shortcut]
311
+from=-3
312
+activation=linear
313
+
314
+
315
+[convolutional]
316
+batch_normalize=1
317
+filters=256
318
+size=1
319
+stride=1
320
+pad=1
321
+activation=leaky
322
+
323
+[convolutional]
324
+batch_normalize=1
325
+filters=512
326
+size=3
327
+stride=1
328
+pad=1
329
+activation=leaky
330
+
331
+[shortcut]
332
+from=-3
333
+activation=linear
334
+
335
+
336
+[convolutional]
337
+batch_normalize=1
338
+filters=256
339
+size=1
340
+stride=1
341
+pad=1
342
+activation=leaky
343
+
344
+[convolutional]
345
+batch_normalize=1
346
+filters=512
347
+size=3
348
+stride=1
349
+pad=1
350
+activation=leaky
351
+
352
+[shortcut]
353
+from=-3
354
+activation=linear
355
+
356
+
357
+[convolutional]
358
+batch_normalize=1
359
+filters=256
360
+size=1
361
+stride=1
362
+pad=1
363
+activation=leaky
364
+
365
+[convolutional]
366
+batch_normalize=1
367
+filters=512
368
+size=3
369
+stride=1
370
+pad=1
371
+activation=leaky
372
+
373
+[shortcut]
374
+from=-3
375
+activation=linear
376
+
377
+[convolutional]
378
+batch_normalize=1
379
+filters=256
380
+size=1
381
+stride=1
382
+pad=1
383
+activation=leaky
384
+
385
+[convolutional]
386
+batch_normalize=1
387
+filters=512
388
+size=3
389
+stride=1
390
+pad=1
391
+activation=leaky
392
+
393
+[shortcut]
394
+from=-3
395
+activation=linear
396
+
397
+
398
+[convolutional]
399
+batch_normalize=1
400
+filters=256
401
+size=1
402
+stride=1
403
+pad=1
404
+activation=leaky
405
+
406
+[convolutional]
407
+batch_normalize=1
408
+filters=512
409
+size=3
410
+stride=1
411
+pad=1
412
+activation=leaky
413
+
414
+[shortcut]
415
+from=-3
416
+activation=linear
417
+
418
+
419
+[convolutional]
420
+batch_normalize=1
421
+filters=256
422
+size=1
423
+stride=1
424
+pad=1
425
+activation=leaky
426
+
427
+[convolutional]
428
+batch_normalize=1
429
+filters=512
430
+size=3
431
+stride=1
432
+pad=1
433
+activation=leaky
434
+
435
+[shortcut]
436
+from=-3
437
+activation=linear
438
+
439
+[convolutional]
440
+batch_normalize=1
441
+filters=256
442
+size=1
443
+stride=1
444
+pad=1
445
+activation=leaky
446
+
447
+[convolutional]
448
+batch_normalize=1
449
+filters=512
450
+size=3
451
+stride=1
452
+pad=1
453
+activation=leaky
454
+
455
+[shortcut]
456
+from=-3
457
+activation=linear
458
+
459
+# Downsample
460
+
461
+[convolutional]
462
+batch_normalize=1
463
+filters=1024
464
+size=3
465
+stride=2
466
+pad=1
467
+activation=leaky
468
+
469
+[convolutional]
470
+batch_normalize=1
471
+filters=512
472
+size=1
473
+stride=1
474
+pad=1
475
+activation=leaky
476
+
477
+[convolutional]
478
+batch_normalize=1
479
+filters=1024
480
+size=3
481
+stride=1
482
+pad=1
483
+activation=leaky
484
+
485
+[shortcut]
486
+from=-3
487
+activation=linear
488
+
489
+[convolutional]
490
+batch_normalize=1
491
+filters=512
492
+size=1
493
+stride=1
494
+pad=1
495
+activation=leaky
496
+
497
+[convolutional]
498
+batch_normalize=1
499
+filters=1024
500
+size=3
501
+stride=1
502
+pad=1
503
+activation=leaky
504
+
505
+[shortcut]
506
+from=-3
507
+activation=linear
508
+
509
+[convolutional]
510
+batch_normalize=1
511
+filters=512
512
+size=1
513
+stride=1
514
+pad=1
515
+activation=leaky
516
+
517
+[convolutional]
518
+batch_normalize=1
519
+filters=1024
520
+size=3
521
+stride=1
522
+pad=1
523
+activation=leaky
524
+
525
+[shortcut]
526
+from=-3
527
+activation=linear
528
+
529
+[convolutional]
530
+batch_normalize=1
531
+filters=512
532
+size=1
533
+stride=1
534
+pad=1
535
+activation=leaky
536
+
537
+[convolutional]
538
+batch_normalize=1
539
+filters=1024
540
+size=3
541
+stride=1
542
+pad=1
543
+activation=leaky
544
+
545
+[shortcut]
546
+from=-3
547
+activation=linear
548
+
549
+######################
550
+
551
+[convolutional]
552
+batch_normalize=1
553
+filters=512
554
+size=1
555
+stride=1
556
+pad=1
557
+activation=leaky
558
+
559
+[convolutional]
560
+batch_normalize=1
561
+size=3
562
+stride=1
563
+pad=1
564
+filters=1024
565
+activation=leaky
566
+
567
+[convolutional]
568
+batch_normalize=1
569
+filters=512
570
+size=1
571
+stride=1
572
+pad=1
573
+activation=leaky
574
+
575
+[convolutional]
576
+batch_normalize=1
577
+size=3
578
+stride=1
579
+pad=1
580
+filters=1024
581
+activation=leaky
582
+
583
+[convolutional]
584
+batch_normalize=1
585
+filters=512
586
+size=1
587
+stride=1
588
+pad=1
589
+activation=leaky
590
+
591
+[convolutional]
592
+batch_normalize=1
593
+size=3
594
+stride=1
595
+pad=1
596
+filters=1024
597
+activation=leaky
598
+
599
+[convolutional]
600
+size=1
601
+stride=1
602
+pad=1
603
+filters=255
604
+activation=linear
605
+
606
+
607
+[yolo]
608
+mask = 6,7,8
609
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
610
+classes=80
611
+num=9
612
+jitter=.3
613
+ignore_thresh = .7
614
+truth_thresh = 1
615
+random=1
616
+
617
+
618
+[route]
619
+layers = -4
620
+
621
+[convolutional]
622
+batch_normalize=1
623
+filters=256
624
+size=1
625
+stride=1
626
+pad=1
627
+activation=leaky
628
+
629
+[upsample]
630
+stride=2
631
+
632
+[route]
633
+layers = -1, 61
634
+
635
+
636
+
637
+[convolutional]
638
+batch_normalize=1
639
+filters=256
640
+size=1
641
+stride=1
642
+pad=1
643
+activation=leaky
644
+
645
+[convolutional]
646
+batch_normalize=1
647
+size=3
648
+stride=1
649
+pad=1
650
+filters=512
651
+activation=leaky
652
+
653
+[convolutional]
654
+batch_normalize=1
655
+filters=256
656
+size=1
657
+stride=1
658
+pad=1
659
+activation=leaky
660
+
661
+[convolutional]
662
+batch_normalize=1
663
+size=3
664
+stride=1
665
+pad=1
666
+filters=512
667
+activation=leaky
668
+
669
+[convolutional]
670
+batch_normalize=1
671
+filters=256
672
+size=1
673
+stride=1
674
+pad=1
675
+activation=leaky
676
+
677
+[convolutional]
678
+batch_normalize=1
679
+size=3
680
+stride=1
681
+pad=1
682
+filters=512
683
+activation=leaky
684
+
685
+[convolutional]
686
+size=1
687
+stride=1
688
+pad=1
689
+filters=255
690
+activation=linear
691
+
692
+
693
+[yolo]
694
+mask = 3,4,5
695
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
696
+classes=80
697
+num=9
698
+jitter=.3
699
+ignore_thresh = .7
700
+truth_thresh = 1
701
+random=1
702
+
703
+
704
+
705
+[route]
706
+layers = -4
707
+
708
+[convolutional]
709
+batch_normalize=1
710
+filters=128
711
+size=1
712
+stride=1
713
+pad=1
714
+activation=leaky
715
+
716
+[upsample]
717
+stride=2
718
+
719
+[route]
720
+layers = -1, 36
721
+
722
+
723
+
724
+[convolutional]
725
+batch_normalize=1
726
+filters=128
727
+size=1
728
+stride=1
729
+pad=1
730
+activation=leaky
731
+
732
+[convolutional]
733
+batch_normalize=1
734
+size=3
735
+stride=1
736
+pad=1
737
+filters=256
738
+activation=leaky
739
+
740
+[convolutional]
741
+batch_normalize=1
742
+filters=128
743
+size=1
744
+stride=1
745
+pad=1
746
+activation=leaky
747
+
748
+[convolutional]
749
+batch_normalize=1
750
+size=3
751
+stride=1
752
+pad=1
753
+filters=256
754
+activation=leaky
755
+
756
+[convolutional]
757
+batch_normalize=1
758
+filters=128
759
+size=1
760
+stride=1
761
+pad=1
762
+activation=leaky
763
+
764
+[convolutional]
765
+batch_normalize=1
766
+size=3
767
+stride=1
768
+pad=1
769
+filters=256
770
+activation=leaky
771
+
772
+[convolutional]
773
+size=1
774
+stride=1
775
+pad=1
776
+filters=255
777
+activation=linear
778
+
779
+
780
+[yolo]
781
+mask = 0,1,2
782
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
783
+classes=80
784
+num=9
785
+jitter=.3
786
+ignore_thresh = .7
787
+truth_thresh = 1
788
+random=1