f video_play: 139
+        video_path = args.video_path
140
+        if args.verbose:
141
+            print('Opening '+video_path+" .... ")
142
+        start_video(video_path)
143
+    if image:
144
+        image_path = args.image_path
145
+        if args.verbose:
146
+            print("Opening "+image_path+" .... ")
147
+        image_detect(image_path)
148
+
149
+
150
+    cv2.destroyAllWindows()

+ 182 - 0
yolov3-tiny.cfg

@@ -0,0 +1,182 @@
1
+[net]
2
+# Testing
3
+batch=1
4
+subdivisions=1
5
+# Training
6
+# batch=64
7
+# subdivisions=2
8
+width=416
9
+height=416
10
+channels=3
11
+momentum=0.9
12
+decay=0.0005
13
+angle=0
14
+saturation = 1.5
15
+exposure = 1.5
16
+hue=.1
17
+
18
+learning_rate=0.001
19
+burn_in=1000
20
+max_batches = 500200
21
+policy=steps
22
+steps=400000,450000
23
+scales=.1,.1
24
+
25
+[convolutional]
26
+batch_normalize=1
27
+filters=16
28
+size=3
29
+stride=1
30
+pad=1
31
+activation=leaky
32
+
33
+[maxpool]
34
+size=2
35
+stride=2
36
+
37
+[convolutional]
38
+batch_normalize=1
39
+filters=32
40
+size=3
41
+stride=1
42
+pad=1
43
+activation=leaky
44
+
45
+[maxpool]
46
+size=2
47
+stride=2
48
+
49
+[convolutional]
50
+batch_normalize=1
51
+filters=64
52
+size=3
53
+stride=1
54
+pad=1
55
+activation=leaky
56
+
57
+[maxpool]
58
+size=2
59
+stride=2
60
+
61
+[convolutional]
62
+batch_normalize=1
63
+filters=128
64
+size=3
65
+stride=1
66
+pad=1
67
+activation=leaky
68
+
69
+[maxpool]
70
+size=2
71
+stride=2
72
+
73
+[convolutional]
74
+batch_normalize=1
75
+filters=256
76
+size=3
77
+stride=1
78
+pad=1
79
+activation=leaky
80
+
81
+[maxpool]
82
+size=2
83
+stride=2
84
+
85
+[convolutional]
86
+batch_normalize=1
87
+filters=512
88
+size=3
89
+stride=1
90
+pad=1
91
+activation=leaky
92
+
93
+[maxpool]
94
+size=2
95
+stride=1
96
+
97
+[convolutional]
98
+batch_normalize=1
99
+filters=1024
100
+size=3
101
+stride=1
102
+pad=1
103
+activation=leaky
104
+
105
+###########
106
+
107
+[convolutional]
108
+batch_normalize=1
109
+filters=256
110
+size=1
111
+stride=1
112
+pad=1
113
+activation=leaky
114
+
115
+[convolutional]
116
+batch_normalize=1
117
+filters=512
118
+size=3
119
+stride=1
120
+pad=1
121
+activation=leaky
122
+
123
+[convolutional]
124
+size=1
125
+stride=1
126
+pad=1
127
+filters=255
128
+activation=linear
129
+
130
+
131
+
132
+[yolo]
133
+mask = 3,4,5
134
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
135
+classes=80
136
+num=6
137
+jitter=.3
138
+ignore_thresh = .7
139
+truth_thresh = 1
140
+random=1
141
+
142
+[route]
143
+layers = -4
144
+
145
+[convolutional]
146
+batch_normalize=1
147
+filters=128
148
+size=1
149
+stride=1
150
+pad=1
151
+activation=leaky
152
+
153
+[upsample]
154
+stride=2
155
+
156
+[route]
157
+layers = -1, 8
158
+
159
+[convolutional]
160
+batch_normalize=1
161
+filters=256
162
+size=3
163
+stride=1
164
+pad=1
165
+activation=leaky
166
+
167
+[convolutional]
168
+size=1
169
+stride=1
170
+pad=1
171
+filters=255
172
+activation=linear
173
+
174
+[yolo]
175
+mask = 0,1,2
176
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
177
+classes=80
178
+num=6
179
+jitter=.3
180
+ignore_thresh = .7
181
+truth_thresh = 1
182
+random=1

+ 788 - 0
yolov3.cfg

@@ -0,0 +1,788 @@
1
+[net]
2
+# Testing
3
+# batch=1
4
+# subdivisions=1
5
+# Training
6
+batch=64
7
+subdivisions=16
8
+width=608
9
+height=608
10
+channels=3
11
+momentum=0.9
12
+decay=0.0005
13
+angle=0
14
+saturation = 1.5
15
+exposure = 1.5
16
+hue=.1
17
+
18
+learning_rate=0.001
19
+burn_in=1000
20
+max_batches = 500200
21
+policy=steps
22
+steps=400000,450000
23
+scales=.1,.1
24
+
25
+[convolutional]
26
+batch_normalize=1
27
+filters=32
28
+size=3
29
+stride=1
30
+pad=1
31
+activation=leaky
32
+
33
+# Downsample
34
+
35
+[convolutional]
36
+batch_normalize=1
37
+filters=64
38
+size=3
39
+stride=2
40
+pad=1
41
+activation=leaky
42
+
43
+[convolutional]
44
+batch_normalize=1
45
+filters=32
46
+size=1
47
+stride=1
48
+pad=1
49
+activation=leaky
50
+
51
+[convolutional]
52
+batch_normalize=1
53
+filters=64
54
+size=3
55
+stride=1
56
+pad=1
57
+activation=leaky
58
+
59
+[shortcut]
60
+from=-3
61
+activation=linear
62
+
63
+# Downsample
64
+
65
+[convolutional]
66
+batch_normalize=1
67
+filters=128
68
+size=3
69
+stride=2
70
+pad=1
71
+activation=leaky
72
+
73
+[convolutional]
74
+batch_normalize=1
75
+filters=64
76
+size=1
77
+stride=1
78
+pad=1
79
+activation=leaky
80
+
81
+[convolutional]
82
+batch_normalize=1
83
+filters=128
84
+size=3
85
+stride=1
86
+pad=1
87
+activation=leaky
88
+
89
+[shortcut]
90
+from=-3
91
+activation=linear
92
+
93
+[convolutional]
94
+batch_normalize=1
95
+filters=64
96
+size=1
97
+stride=1
98
+pad=1
99
+activation=leaky
100
+
101
+[convolutional]
102
+batch_normalize=1
103
+filters=128
104
+size=3
105
+stride=1
106
+pad=1
107
+activation=leaky
108
+
109
+[shortcut]
110
+from=-3
111
+activation=linear
112
+
113
+# Downsample
114
+
115
+[convolutional]
116
+batch_normalize=1
117
+filters=256
118
+size=3
119
+stride=2
120
+pad=1
121
+activation=leaky
122
+
123
+[convolutional]
124
+batch_normalize=1
125
+filters=128
126
+size=1
127
+stride=1
128
+pad=1
129
+activation=leaky
130
+
131
+[convolutional]
132
+batch_normalize=1
133
+filters=256
134
+size=3
135
+stride=1
136
+pad=1
137
+activation=leaky
138
+
139
+[shortcut]
140
+from=-3
141
+activation=linear
142
+
143
+[convolutional]
144
+batch_normalize=1
145
+filters=128
146
+size=1
147
+stride=1
148
+pad=1
149
+activation=leaky
150
+
151
+[convolutional]
152
+batch_normalize=1
153
+filters=256
154
+size=3
155
+stride=1
156
+pad=1
157
+activation=leaky
158
+
159
+[shortcut]
160
+from=-3
161
+activation=linear
162
+
163
+[convolutional]
164
+batch_normalize=1
165
+filters=128
166
+size=1
167
+stride=1
168
+pad=1
169
+activation=leaky
170
+
171
+[convolutional]
172
+batch_normalize=1
173
+filters=256
174
+size=3
175
+stride=1
176
+pad=1
177
+activation=leaky
178
+
179
+[shortcut]
180
+from=-3
181
+activation=linear
182
+
183
+[convolutional]
184
+batch_normalize=1
185
+filters=128
186
+size=1
187
+stride=1
188
+pad=1
189
+activation=leaky
190
+
191
+[convolutional]
192
+batch_normalize=1
193
+filters=256
194
+size=3
195
+stride=1
196
+pad=1
197
+activation=leaky
198
+
199
+[shortcut]
200
+from=-3
201
+activation=linear
202
+
203
+
204
+[convolutional]
205
+batch_normalize=1
206
+filters=128
207
+size=1
208
+stride=1
209
+pad=1
210
+activation=leaky
211
+
212
+[convolutional]
213
+batch_normalize=1
214
+filters=256
215
+size=3
216
+stride=1
217
+pad=1
218
+activation=leaky
219
+
220
+[shortcut]
221
+from=-3
222
+activation=linear
223
+
224
+[convolutional]
225
+batch_normalize=1
226
+filters=128
227
+size=1
228
+stride=1
229
+pad=1
230
+activation=leaky
231
+
232
+[convolutional]
233
+batch_normalize=1
234
+filters=256
235
+size=3
236
+stride=1
237
+pad=1
238
+activation=leaky
239
+
240
+[shortcut]
241
+from=-3
242
+activation=linear
243
+
244
+[convolutional]
245
+batch_normalize=1
246
+filters=128
247
+size=1
248
+stride=1
249
+pad=1
250
+activation=leaky
251
+
252
+[convolutional]
253
+batch_normalize=1
254
+filters=256
255
+size=3
256
+stride=1
257
+pad=1
258
+activation=leaky
259
+
260
+[shortcut]
261
+from=-3
262
+activation=linear
263
+
264
+[convolutional]
265
+batch_normalize=1
266
+filters=128
267
+size=1
268
+stride=1
269
+pad=1
270
+activation=leaky
271
+
272
+[convolutional]
273
+batch_normalize=1
274
+filters=256
275
+size=3
276
+stride=1
277
+pad=1
278
+activation=leaky
279
+
280
+[shortcut]
281
+from=-3
282
+activation=linear
283
+
284
+# Downsample
285
+
286
+[convolutional]
287
+batch_normalize=1
288
+filters=512
289
+size=3
290
+stride=2
291
+pad=1
292
+activation=leaky
293
+
294
+[convolutional]
295
+batch_normalize=1
296
+filters=256
297
+size=1
298
+stride=1
299
+pad=1
300
+activation=leaky
301
+
302
+[convolutional]
303
+batch_normalize=1
304
+filters=512
305
+size=3
306
+stride=1
307
+pad=1
308
+activation=leaky
309
+
310
+[shortcut]
311
+from=-3
312
+activation=linear
313
+
314
+
315
+[convolutional]
316
+batch_normalize=1
317
+filters=256
318
+size=1
319
+stride=1
320
+pad=1
321
+activation=leaky
322
+
323
+[convolutional]
324
+batch_normalize=1
325
+filters=512
326
+size=3
327
+stride=1
328
+pad=1
329
+activation=leaky
330
+
331
+[shortcut]
332
+from=-3
333
+activation=linear
334
+
335
+
336
+[convolutional]
337
+batch_normalize=1
338
+filters=256
339
+size=1
340
+stride=1
341
+pad=1
342
+activation=leaky
343
+
344
+[convolutional]
345
+batch_normalize=1
346
+filters=512
347
+size=3
348
+stride=1
349
+pad=1
350
+activation=leaky
351
+
352
+[shortcut]
353
+from=-3
354
+activation=linear
355
+
356
+
357
+[convolutional]
358
+batch_normalize=1
359
+filters=256
360
+size=1
361
+stride=1
362
+pad=1
363
+activation=leaky
364
+
365
+[convolutional]
366
+batch_normalize=1
367
+filters=512
368
+size=3
369
+stride=1
370
+pad=1
371
+activation=leaky
372
+
373
+[shortcut]
374
+from=-3
375
+activation=linear
376
+
377
+[convolutional]
378
+batch_normalize=1
379
+filters=256
380
+size=1
381
+stride=1
382
+pad=1
383
+activation=leaky
384
+
385
+[convolutional]
386
+batch_normalize=1
387
+filters=512
388
+size=3
389
+stride=1
390
+pad=1
391
+activation=leaky
392
+
393
+[shortcut]
394
+from=-3
395
+activation=linear
396
+
397
+
398
+[convolutional]
399
+batch_normalize=1
400
+filters=256
401
+size=1
402
+stride=1
403
+pad=1
404
+activation=leaky
405
+
406
+[convolutional]
407
+batch_normalize=1
408
+filters=512
409
+size=3
410
+stride=1
411
+pad=1
412
+activation=leaky
413
+
414
+[shortcut]
415
+from=-3
416
+activation=linear
417
+
418
+
419
+[convolutional]
420
+batch_normalize=1
421
+filters=256
422
+size=1
423
+stride=1
424
+pad=1
425
+activation=leaky
426
+
427
+[convolutional]
428
+batch_normalize=1
429
+filters=512
430
+size=3
431
+stride=1
432
+pad=1
433
+activation=leaky
434
+
435
+[shortcut]
436
+from=-3
437
+activation=linear
438
+
439
+[convolutional]
440
+batch_normalize=1
441
+filters=256
442
+size=1
443
+stride=1
444
+pad=1
445
+activation=leaky
446
+
447
+[convolutional]
448
+batch_normalize=1
449
+filters=512
450
+size=3
451
+stride=1
452
+pad=1
453
+activation=leaky
454
+
455
+[shortcut]
456
+from=-3
457
+activation=linear
458
+
459
+# Downsample
460
+
461
+[convolutional]
462
+batch_normalize=1
463
+filters=1024
464
+size=3
465
+stride=2
466
+pad=1
467
+activation=leaky
468
+
469
+[convolutional]
470
+batch_normalize=1
471
+filters=512
472
+size=1
473
+stride=1
474
+pad=1
475
+activation=leaky
476
+
477
+[convolutional]
478
+batch_normalize=1
479
+filters=1024
480
+size=3
481
+stride=1
482
+pad=1
483
+activation=leaky
484
+
485
+[shortcut]
486
+from=-3
487
+activation=linear
488
+
489
+[convolutional]
490
+batch_normalize=1
491
+filters=512
492
+size=1
493
+stride=1
494
+pad=1
495
+activation=leaky
496
+
497
+[convolutional]
498
+batch_normalize=1
499
+filters=1024
500
+size=3
501
+stride=1
502
+pad=1
503
+activation=leaky
504
+
505
+[shortcut]
506
+from=-3
507
+activation=linear
508
+
509
+[convolutional]
510
+batch_normalize=1
511
+filters=512
512
+size=1
513
+stride=1
514
+pad=1
515
+activation=leaky
516
+
517
+[convolutional]
518
+batch_normalize=1
519
+filters=1024
520
+size=3
521
+stride=1
522
+pad=1
523
+activation=leaky
524
+
525
+[shortcut]
526
+from=-3
527
+activation=linear
528
+
529
+[convolutional]
530
+batch_normalize=1
531
+filters=512
532
+size=1
533
+stride=1
534
+pad=1
535
+activation=leaky
536
+
537
+[convolutional]
538
+batch_normalize=1
539
+filters=1024
540
+size=3
541
+stride=1
542
+pad=1
543
+activation=leaky
544
+
545
+[shortcut]
546
+from=-3
547
+activation=linear
548
+
549
+######################
550
+
551
+[convolutional]
552
+batch_normalize=1
553
+filters=512
554
+size=1
555
+stride=1
556
+pad=1
557
+activation=leaky
558
+
559
+[convolutional]
560
+batch_normalize=1
561
+size=3
562
+stride=1
563
+pad=1
564
+filters=1024
565
+activation=leaky
566
+
567
+[convolutional]
568
+batch_normalize=1
569
+filters=512
570
+size=1
571
+stride=1
572
+pad=1
573
+activation=leaky
574
+
575
+[convolutional]
576
+batch_normalize=1
577
+size=3
578
+stride=1
579
+pad=1
580
+filters=1024
581
+activation=leaky
582
+
583
+[convolutional]
584
+batch_normalize=1
585
+filters=512
586
+size=1
587
+stride=1
588
+pad=1
589
+activation=leaky
590
+
591
+[convolutional]
592
+batch_normalize=1
593
+size=3
594
+stride=1
595
+pad=1
596
+filters=1024
597
+activation=leaky
598
+
599
+[convolutional]
600
+size=1
601
+stride=1
602
+pad=1
603
+filters=255
604
+activation=linear
605
+
606
+
607
+[yolo]
608
+mask = 6,7,8
609
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
610
+classes=80
611
+num=9
612
+jitter=.3
613
+ignore_thresh = .7
614
+truth_thresh = 1
615
+random=1
616
+
617
+
618
+[route]
619
+layers = -4
620
+
621
+[convolutional]
622
+batch_normalize=1
623
+filters=256
624
+size=1
625
+stride=1
626
+pad=1
627
+activation=leaky
628
+
629
+[upsample]
630
+stride=2
631
+
632
+[route]
633
+layers = -1, 61
634
+
635
+
636
+
637
+[convolutional]
638
+batch_normalize=1
639
+filters=256
640
+size=1
641
+stride=1
642
+pad=1
643
+activation=leaky
644
+
645
+[convolutional]
646
+batch_normalize=1
647
+size=3
648
+stride=1
649
+pad=1
650
+filters=512
651
+activation=leaky
652
+
653
+[convolutional]
654
+batch_normalize=1
655
+filters=256
656
+size=1
657
+stride=1
658
+pad=1
659
+activation=leaky
660
+
661
+[convolutional]
662
+batch_normalize=1
663
+size=3
664
+stride=1
665
+pad=1
666
+filters=512
667
+activation=leaky
668
+
669
+[convolutional]
670
+batch_normalize=1
671
+filters=256
672
+size=1
673
+stride=1
674
+pad=1
675
+activation=leaky
676
+
677
+[convolutional]
678
+batch_normalize=1
679
+size=3
680
+stride=1
681
+pad=1
682
+filters=512
683
+activation=leaky
684
+
685
+[convolutional]
686
+size=1
687
+stride=1
688
+pad=1
689
+filters=255
690
+activation=linear
691
+
692
+
693
+[yolo]
694
+mask = 3,4,5
695
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
696
+classes=80
697
+num=9
698
+jitter=.3
699
+ignore_thresh = .7
700
+truth_thresh = 1
701
+random=1
702
+
703
+
704
+
705
+[route]
706
+layers = -4
707
+
708
+[convolutional]
709
+batch_normalize=1
710
+filters=128
711
+size=1
712
+stride=1
713
+pad=1
714
+activation=leaky
715
+
716
+[upsample]
717
+stride=2
718
+
719
+[route]
720
+layers = -1, 36
721
+
722
+
723
+
724
+[convolutional]
725
+batch_normalize=1
726
+filters=128
727
+size=1
728
+stride=1
729
+pad=1
730
+activation=leaky
731
+
732
+[convolutional]
733
+batch_normalize=1
734
+size=3
735
+stride=1
736
+pad=1
737
+filters=256
738
+activation=leaky
739
+
740
+[convolutional]
741
+batch_normalize=1
742
+filters=128
743
+size=1
744
+stride=1
745
+pad=1
746
+activation=leaky
747
+
748
+[convolutional]
749
+batch_normalize=1
750
+size=3
751
+stride=1
752
+pad=1
753
+filters=256
754
+activation=leaky
755
+
756
+[convolutional]
757
+batch_normalize=1
758
+filters=128
759
+size=1
760
+stride=1
761
+pad=1
762
+activation=leaky
763
+
764
+[convolutional]
765
+batch_normalize=1
766
+size=3
767
+stride=1
768
+pad=1
769
+filters=256
770
+activation=leaky
771
+
772
+[convolutional]
773
+size=1
774
+stride=1
775
+pad=1
776
+filters=255
777
+activation=linear
778
+
779
+
780
+[yolo]
781
+mask = 0,1,2
782
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
783
+classes=80
784
+num=9
785
+jitter=.3
786
+ignore_thresh = .7
787
+truth_thresh = 1
788
+random=1

latest · 967b4432ea - Gogs: Simplico Git Service
Tum 2 年之前
父節點
當前提交
967b4432ea
共有 4 個文件被更改,包括 64 次插入134 次删除
  1. 二進制
      app/Output/excel_out_test_excel_formatter_update.xlsx
  2. 34 132
      app/backend/templates/backend/index.html
  3. 8 2
      app/backend/views.py
  4. 22 0
      app/exfo/lib.py

二進制
app/Output/excel_out_test_excel_formatter_update.xlsx


+ 34 - 132
app/backend/templates/backend/index.html

@@ -1,15 +1,16 @@
1 1
 {% extends "base.html" %}
2 2
 {% load backend_tags %}
3 3
 {% block content %}
4
-<h2>APIs</h2>
4
+<h2>Exfo APIs</h2>
5 5
       <div class='row row-cols-md-5 row-cols-2'>
6 6
       {% for r in output.results %}
7 7
       <div class='p-3 border text-center'><a href="/backend/service_status?cmd={{r.URI}}/v1&section=index">{{ r.display_name }}</a></div>
8 8
       {% endfor %}
9 9
       </div>
10
+      <!--
10 11
       <pre>
11 12
       {{ output | pprint }}
12
-      </pre>
13
+      </pre> -->
13 14
       <h1>SLA</h1>
14 15
 
15 16
       {% for x  in sla.result %}
@@ -28,6 +29,37 @@
28 29
           </ul>
29 30
         {% endfor %}
30 31
       {% endfor %}
32
+      <hr>
33
+<h2>Mikrotik APIs</h2>
34
+<!--
35
+<pre>
36
+{{ mk_ips | pprint }}
37
+</pre> -->
38
+<h5 class='text-primary'>IP/ROUTE</h5>
39
+{% for ip in mk_ips %}
40
+<h4>{{ ip.gateway }}</h4>
41
+  <div class='d-flex flex-row justify-content-start  flex-wrap align-content-stretch mb-5'>
42
+    {% for k,v in ip.items %}
43
+      <div class='border p-3 fw-bolder'>{{ k }}</div><div class='border p-3'>{{ v }}</div>
44
+    {% endfor %}
45
+  </div>
46
+  
47
+{% endfor %}
48
+
49
+<h5 class='text-primary'>IP/Address</h5>
50
+<!-- 
51
+<pre>
52
+{{ mk_address | pprint }}
53
+</pre> -->
54
+{% for ip in mk_address %}
55
+<h4>{{ ip.interface }}</h4>
56
+  <div class='d-flex flex-row justify-content-start  flex-wrap align-content-stretch mb-5'>
57
+    {% for k,v in ip.items %}
58
+      <div class='border p-3 fw-bolder'>{{ k }}</div><div class='border p-3'>{{ v }}</div>
59
+    {% endfor %}
60
+  </div>
61
+  
62
+{% endfor %}
31 63
 
32 64
 <div class='py-3'>
33 65
   <p>
@@ -43,134 +75,4 @@
43 75
     </div>
44 76
   </div>
45 77
 </div>
46
-      <canvas class="my-4 w-100" id="myChart" width="900" height="380"></canvas>
47
-
48
-      <h2>Section title</h2>
49
-      <div class="table-responsive">
50
-        <table class="table table-striped table-sm">
51
-          <thead>
52
-            <tr>
53
-              <th scope="col">#</th>
54
-              <th scope="col">Header</th>
55
-              <th scope="col">Header</th>
56
-              <th scope="col">Header</th>
57
-              <th scope="col">Header</th>
58
-            </tr>
59
-          </thead>
60
-          <tbody>
61
-            <tr>
62
-              <td>1,001</td>
63
-              <td>random</td>
64
-              <td>data</td>
65
-              <td>placeholder</td>
66
-              <td>text</td>
67
-            </tr>
68
-            <tr>
69
-              <td>1,002</td>
70
-              <td>placeholder</td>
71
-              <td>irrelevant</td>
72
-              <td>visual</td>
73
-              <td>layout</td>
74
-            </tr>
75
-            <tr>
76
-              <td>1,003</td>
77
-              <td>data</td>
78
-              <td>rich</td>
79
-              <td>dashboard</td>
80
-              <td>tabular</td>
81
-            </tr>
82
-            <tr>
83
-              <td>1,003</td>
84
-              <td>information</td>
85
-              <td>placeholder</td>
86
-              <td>illustrative</td>
87
-              <td>data</td>
88
-            </tr>
89
-            <tr>
90
-              <td>1,004</td>
91
-              <td>text</td>
92
-              <td>random</td>
93
-              <td>layout</td>
94
-              <td>dashboard</td>
95
-            </tr>
96
-            <tr>
97
-              <td>1,005</td>
98
-              <td>dashboard</td>
99
-              <td>irrelevant</td>
100
-              <td>text</td>
101
-              <td>placeholder</td>
102
-            </tr>
103
-            <tr>
104
-              <td>1,006</td>
105
-              <td>dashboard</td>
106
-              <td>illustrative</td>
107
-              <td>rich</td>
108
-              <td>data</td>
109
-            </tr>
110
-            <tr>
111
-              <td>1,007</td>
112
-              <td>placeholder</td>
113
-              <td>tabular</td>
114
-              <td>information</td>
115
-              <td>irrelevant</td>
116
-            </tr>
117
-            <tr>
118
-              <td>1,008</td>
119
-              <td>random</td>
120
-              <td>data</td>
121
-              <td>placeholder</td>
122
-              <td>text</td>
123
-            </tr>
124
-            <tr>
125
-              <td>1,009</td>
126
-              <td>placeholder</td>
127
-              <td>irrelevant</td>
128
-              <td>visual</td>
129
-              <td>layout</td>
130
-            </tr>
131
-            <tr>
132
-              <td>1,010</td>
133
-              <td>data</td>
134
-              <td>rich</td>
135
-              <td>dashboard</td>
136
-              <td>tabular</td>
137
-            </tr>
138
-            <tr>
139
-              <td>1,011</td>
140
-              <td>information</td>
141
-              <td>placeholder</td>
142
-              <td>illustrative</td>
143
-              <td>data</td>
144
-            </tr>
145
-            <tr>
146
-              <td>1,012</td>
147
-              <td>text</td>
148
-              <td>placeholder</td>
149
-              <td>layout</td>
150
-              <td>dashboard</td>
151
-            </tr>
152
-            <tr>
153
-              <td>1,013</td>
154
-              <td>dashboard</td>
155
-              <td>irrelevant</td>
156
-              <td>text</td>
157
-              <td>visual</td>
158
-            </tr>
159
-            <tr>
160
-              <td>1,014</td>
161
-              <td>dashboard</td>
162
-              <td>illustrative</td>
163
-              <td>rich</td>
164
-              <td>data</td>
165
-            </tr>
166
-            <tr>
167
-              <td>1,015</td>
168
-              <td>random</td>
169
-              <td>tabular</td>
170
-              <td>information</td>
171
-              <td>text</td>
172
-            </tr>
173
-          </tbody>
174
-        </table>
175
-      </div>
176 78
 {% endblock %}

+ 8 - 2
app/backend/views.py

@@ -1,6 +1,6 @@
1 1
 from django.shortcuts import render
2 2
 from backend.mongodb import db
3
-from exfo.lib import Exfo
3
+from exfo.lib import Exfo, Mikrotik
4 4
 from pprint import pprint
5 5
 
6 6
 from ttp import ttp
@@ -9,6 +9,9 @@ from django.http import JsonResponse
9 9
 
10 10
 exfo = Exfo("administrator", "exf0w0rxC@t4dm!n")
11 11
 exfo.login()
12
+
13
+mkt = Mikrotik()
14
+
12 15
 def index(request):
13 16
     collection  = db['mascot']
14 17
     mascot_details = collection.find({})
@@ -96,8 +99,11 @@ interface {{ interface | contains("Vlan") }}
96 99
     # # print result in JSON format
97 100
     # results = parser.result(format='xlsx')[0]
98 101
     # pprint(results)
102
+    mk_ips = mkt.call_remote("ip/route") 
103
+    mk_address = mkt.call_remote("ip/address") 
104
+
99 105
     return render(request, 'backend/index.html', {'objs': mascot_details, 'output': rapi.json(),\
100
-            'sla': sla.json()})
106
+            'sla': sla.json(), 'mk_ips': mk_ips, 'mk_address': mk_address})
101 107
 
102 108
 
103 109
 #Define Collection

+ 22 - 0
app/exfo/lib.py

@@ -109,6 +109,22 @@ class Exfo:
109 109
 
110 110
 
111 111
 
112
+from requests.auth import HTTPBasicAuth
113
+
114
+
115
+class Mikrotik:
116
+    BASE_URL = "https://110.77.145.239/rest/"
117
+    basic = HTTPBasicAuth('brix', 'Digitins_01')
118
+
119
+    headers = {
120
+      'Authorization': 'Basic YWRtaW46RGlnaXRpbnNfMDE='
121
+    }
122
+
123
+    def call_remote(self, cmd, payload={}):
124
+        url = self.BASE_URL + cmd
125
+        pprint(url)
126
+        response = requests.get(url, auth=self.basic,  data=payload, verify=False)
127
+        return response.json()
112 128
 
113 129
 
114 130
 if __name__ == '__main__':
@@ -120,3 +136,9 @@ if __name__ == '__main__':
120 136
     e.test_avl_test_types()
121 137
     e.logout()
122 138
 
139
+    mkt = Mikrotik()
140
+    pprint("--- ip/route ---")
141
+    pprint(mkt.call_remote("ip/route"))
142
+    pprint("--- ip/address -- ")
143
+    pprint(mkt.call_remote("ip/address"))
144
+